In order to study the ductile deformation characteristics and failure process of plain concrete under uniaxial compression, this paper proposes a new constitutive model. The new model was used to fit and analyze the constitutive curve of concrete under uniaxial compressive under various degradation forms and was compared with the traditional constitutive models. Finally, the new model was used to quantitatively analyze and predict the stress–strain curve of concrete in different degradation periods of a set of freeze–thaw measured data. The results show that, compared with the traditional constitutive model, the new model is simple in form and has few parameters, and the numerical value of the parameter can reflect the ductile deformation capacity of concrete. The fitting curve of the new model has the highest fitting degree with the measured stress–strain curve of concrete, and the goodness of fit (R2) is also the largest. The new model is suitable for fitting the stress–strain curve of concrete under uniaxial compression under various deteriorating forms, and the degree of fit between the constitutive prediction curve and the measured curve is high. It can be seen from the fitting results of the new model parameters that the ductile deformation capacity of concrete decreases first and then increases slightly, which is inconsistent with the law of gradual deterioration of strength. There is a minimum moment of ductility deformation capacity of concrete (MDC). The MDC of O-C40 concrete is about 114 freeze–thaw cycles, and the MDC of O-C50 concrete is about 116 freeze–thaw cycles; the degree of fit between the constitutive prediction curve and the measured curve is high. We hope that the improvement mentioned offers valid reference to the study of ductile deformation characteristics and failure process of compressed concrete under different deterioration forms.
Complex weak structural planes and fault zones induce significant heterogeneity, discontinuity, and nonlinear characteristics of a rock mass. When an earthquake occurs, these characteristics lead to extremely complex seismic wave propagation and vibrational behaviors and thus pose a huge threat to the safety and stability of deep buried tunnels. To investigate the wave propagation in a rock mass with different structural planes and fault zones, this study first introduced the theory of elastic wave propagation and elastodynamic principles and used the Zoeppritz equation to describe wave field decomposition and develop a seismic wave response model accordingly. Then, a physical wave propagation model was constructed to investigate seismic waves passing through a fault, and dynamic damage was analyzed by using shaking table tests. Finally, stress wave attenuation and dynamic incompatible deformation mechanisms in a rock mass with fault zones were explored. The results indicate that under the action of weak structural planes, stress waves appear as a complex wave field decomposition phenomenon. When a stress wave spreads to a weak structural plane, its scattering may transform into a tensile wave, generating tensile stress and destabilizing the rock mass; wave dynamic energy is absorbed by a low-strength rock through wave scattering, which significantly weakens the seismic load. Wave propagation accelerates the initiation and expansion of internal defects in the rock mass and leads to a dynamic incompatible deformation. This is one of the main causes for large deformation and even instability within rock masses. These findings provide an important reference and guide with respect to stability analysis of rock mass with weak structural planes and fault zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.