Circularly polarized (CP) light is of interest in areas such as quantum optical computing, optical spintronics, biomedicine, and high efficiency displays. Direct emission of CP light from organic light-emitting diodes (OLEDs) has been a focus of research as it has the immediate application of increasing efficiency and simplifying device architecture in OLED based displays. High dissymmetry (gEL) factor values have been reported for devices employing fluorescent polymers, but these CP-OLEDs are limited in their ultimate efficiencies by the type of emissive electronic transitions involved. In contrast, phosphorescent OLEDs (PHOLEDs) can emit light from triplet excited states and can therefore achieve very high efficiencies. However, CP-PHOLEDs are significantly understudied, and the two previous reports suffered from very low brightness or gEL values. Here, we use a platinahelicene complex to construct a CP-PHOLED that achieves both a display level brightness and a high gEL factor. The dissymmetry of CP emission reached with this proof-of-concept single-layer helicene-based device is sufficient to provide real-world benefits over nonpolarized emission and paves the way toward chiral metal complex-based CP-PHOLED displays.
The emission of circularly-polarized light is central to many applications, including data storage, quantum computation, biosensing, environmental monitoring and display technologies. An emerging method to induce (chiral) circularly-polarized (CP) electroluminescence from the active layer of polymer light emitting diodes (polymer OLEDs; PLEDs) involves blending achiral polymers with chiral small molecule additives, where the handedness/sign of the CP light is controlled by the absolute stereochemistry of the small molecule. Through the in-depth study of such a system we report an interesting chiroptical property: the ability to tune the sign of CP light as function of active layer thickness for a fixed enantiomer of the chiral additive. We demonstrate that it is possible to achieve both efficient (4.0 cd/A) and bright (8000 cd/m 2) CP-PLEDs, with high dissymmetry of emission of both left handed (LH) and right handed (RH) light, depending on thickness (thin films, 110 nm: g EL = 0.51, thick films, 160 nm: g EL = −1.05, with the terms "thick" and "thin" representing the upper and lower limits of the thickness regime studied), for the same additive enantiomer. We propose that this arises due to an interplay between localized CP emission originating from molecular chirality and CP light amplification or inversion through a chiral medium. We link morphological, spectroscopic, and electronic characterization in thin films and devices with theoretical studies in an effort to determine the factors that underpin these observations. Through the control of active layer thickness and device architecture, this study provides insights into the mechanisms that result in CP luminescence from CP-PLEDs, opportunities in CP photonic device design, and demonstrate high performance CP-PLEDs.
Developing approaches to promote the regeneration of descending supraspinal axons represents an ideal strategy for rebuilding neuronal circuits to improve functional recovery after spinal cord injury (SCI). Our previous studies demonstrated that genetic deletion of phosphatase and tensin homolog (PTEN) in mouse corticospinal neurons reactivates their regenerative capacity, resulting in significant regeneration of corticospinal tract (CST) axons after SCI. However, it is unknown whether nongenetic methods of suppressing PTEN have similar effects and how regenerating axons interact with the extrinsic environment. Herein, we show that suppressing PTEN expression with short-hairpin RNA (shRNA) promotes the regeneration of injured CST axons, and these axons form anatomical synapses in appropriate areas of the cord caudal to the lesion. Importantly, this model of increased CST regrowth enables the analysis of extrinsic regulators of CST regeneration in vivo. We find that regenerating axons avoid dense clusters of fibroblasts and macrophages in the lesion, suggesting that these cell types might be key inhibitors of axon regeneration. Furthermore, most regenerating axons cross the lesion in association with astrocytes, indicating that these cells might be important for providing a permissive bridge for axon regeneration. Lineage analysis reveals that these bridge-forming astrocytes are not derived from ependymal stem cells within the spinal cord, suggesting that they are more likely derived from a subset of mature astrocytes. Overall, this study reveals insights into the critical extrinsic and intrinsic regulators of axon regeneration and establishes shRNA as a viable means to manipulate these regulators and translate findings into other mammalian models.
SUMMARY Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.