Accurate tracking of objects in the real world is highly desirable in Augmented Reality (AR) to aid proper placement of virtual objects in a user's view. Deep neural networks (DNNs) yield high precision in detecting and tracking objects, but they are energy-heavy and can thus be prohibitive for deployment on mobile devices. Towards reducing energy drain while maintaining good object tracking precision, we develop a novel software framework called MARLIN. MAR-LIN only uses a DNN as needed, to detect new objects or recapture objects that significantly change in appearance. It employs lightweight methods in between DNN executions to track the detected objects with high fidelity. We experiment with several baseline DNN models optimized for mobile devices, and via both offline and live object tracking experiments on two different Android phones (one utilizing a mobile GPU), we show that MARLIN compares favorably in terms of accuracy while saving energy significantly. Specifically, we show that MARLIN reduces the energy consumption by up to 73.3% (compared to an approach that executes the best baseline DNN continuously), and improves accuracy by up to 19× (compared to an approach that infrequently executes the same best baseline DNN). Moreover, while in 75% or more cases, MARLIN incurs at most a 7.36% reduction in location accuracy (using the common IOU metric), in more than 46% of the cases, MARLIN even improves the IOU compared to the continuous, best DNN approach. CCS CONCEPTS • Human-centered computing → Ubiquitous and mobile computing systems and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.