This study investigated the survival of Staphylococcus aureus in precooked tuna meat for producing canned products during frozen storage (-20 ± 2 °C) as well as its growth and enterotoxin production at 35 to 37 °C after the storage. Samples (50 ± 5 g) of precooked albacore (loin, chunk, and flake) and skipjack (chunk and flake) tuna were inoculated with 5 enterotoxin-producing strains of S. aureus at a level of approximately 3.5 log CFU/g and individually packed in a vacuum bag after 3 h incubation at 35 to 37 °C. Vacuum-packed samples were stored in a freezer (-20 ± 2 °C) for 4 wk. The frozen samples were then thawed in 37 °C circulating water for 2 h and incubated at 35 to 37 °C for 22 h. Populations of S. aureus in all precooked tuna samples decreased slightly (<0.7 log CFU/g) after 4 wk of storage at -20 ± 2 °C, but increased rapidly once the samples were thawed and held at 35 to 37 °C. Total S. aureus counts in albacore and skipjack samples increased by greater than 3 log CFU/g after 6 and 8 h of exposure to 35 to 37 °C, respectively. All samples became spoiled after 10 h of exposure to 35 to 37 °C, while no enterotoxin was detected in any samples. However, enterotoxins were detected in albacore loin and other samples after 12 and 24 h of incubation at 35 to 37 °C, respectively. Frozen precooked tuna meat should be used for producing canned tuna within 6 to 8 h of thawing to avoid product spoilage and potential enterotoxin production by S. aureus in contaminated precooked tuna meat.
Sigmoidal microbial survival curves are observed in high-pressure carbon dioxide (HPCD) pasteurization treatments. The objectives of this study were to use the Gompertz primary model to describe the inactivation in apple juice of the pathogen CGMCC1.90 and to apply probabilistic engineering to select HPCD treatments meeting at least 5 log reductions ( ≥ 5) at 95% confidence. This required secondary models for the temperature (, °C) and pressure (, MPa) dependence of the Gompertz model parameters. The expressions [Formula: see text] and [Formula: see text] selected using goodness-of-fit measures and assessments based on Akaike and Bayesian information criteria were consistent with proposed mechanistic models for HPCD bactericidal effects. Monte Carlo simulations accounting for the variability and uncertainty of the parameter and estimates were used to predict values for a given time, temperature and CO pressure combination and desired confidence boundary. A similar approach used to estimate process times meeting ≥ 5 at 95% confidence for a given temperature and CO pressure combination, showed that HPCD processes met this requirement only for relatively long processing times, i.e., 35-124 min in the experimental range of 32-42 °C and 10-30 MPa. Therefore, further HPCD research is required to reduce processing time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.