Using the freeze-thaw cycle test chamber, the red sandstone samples are subjected to cyclic freeze-thaw tests. The physical properties, static mechanical properties of freeze-thaw damage rocks, and the compressional wave velocity at specific axial pressure are measured using conventional physical tests and uniaxial compression tests. The mechanical properties of freeze-thaw damage rocks under dynamic and static loading were studied using Hopkinson pressure bar which can exert axial pressure. The studies show that, with the increase of freeze-thaw cycles, the surface layer of the rock sample undergoes spalling phenomenon, the weight gradually decreases, the sample compactness becomes worse, there are microcracks between the cemented particles, and the compressive strength and elastic modulus decrease. Under the static loading, the longitudinal wave velocity of freeze-thaw damaged samples change significantly compared with that of samples without freeze-thaw. The freeze-thaw damage degree, axial pressure, and strain rate are coupled with each other, which together affect the dynamic mechanical properties of samples, and make the variation of mechanical parameters, such as dynamic peak strength and dynamic elastic modulus of rock. The combined action of freeze-thaw damage and axial pressure weakens the strain rate effect of samples, but when the incident wave of SHPB test is same, the dynamic strength and elastic modulus of freeze-thaw damaged samples are reduced compared with those without freeze-thaw. Combining with strain equivalence principle, the constitutive relation of freeze-thaw damage of red sandstone under dynamic and static combined loading can reflect the influence of coupling damage of axial pressure and freeze-thaw, dynamic impact parameters, and other factors, which are in good agreement with the test results.
The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.
The optimized geometries, electron affinities, and dissociation energies of the alkylthio radicals have been determined with the higher level of the Gaussian-3(G3) theory. The geometries are fully optimized and discussed. The reliable adiabatic electron affinities with ZPVE correction have been predicted to be 1.860 eV for the methylthio radical, 1.960 eV for the ethylthio radical, 1.980 and 2.074 eV for the two isomers (n-C3H7S and i-C3H7S) of the propylthio radical, 1.991, 2.133 and 2.013 eV for the three isomers (n-C4H9S, t-C4H9S, and i-C4H9S) of the butylthio radical, and 1.999, 2.147, 2.164, and 2.059 eV for the four isomers (n-C5H11S, b-C5H11S, c-C5H11S, and d-C5H11S) of the pentylthio radical, respectively. These corrected EAad values for the alkylthio radicals are in good agreement with available experiments, and the average absolute error of the G3 method is 0.041 eV. The dissociation energies of S atom from neutral CnH2n+1S (n = 1-5) and S(-) from corresponding anions CnH2n+1S(-) species have also been estimated respectively to examine their relative stabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.