Background: Mild cognitive impairment (MCI) represents a transitional state between normal aging and dementia disorders, especially Alzheimer's disease (AD). The disruption of the default mode network (DMN) is often considered to be a potential biomarker for the progression from MCI to AD. The purpose of this study was to assess MRI-specific changes of DMN in MCI patients by elucidating the convergence of brain regions with abnormal DMN function.Methods: We systematically searched PubMed, Ovid, and Web of science for relevant articles. We identified neuroimaging studies by using amplitude of low frequency fluctuation /fractional amplitude of low frequency fluctuation (ALFF/fALFF), regional homogeneity (ReHo), and functional connectivity (FC) in MCI patients. Based on the activation likelihood estimation (ALE) algorithm, we carried out connectivity modeling of coordination-based meta-analysis and functional meta-analysis.Results: In total, this meta-analysis includes 39 articles on functional neuroimaging studies. Using computer software analysis, we discovered that DMN changes in patients with MCI mainly occur in bilateral inferior frontal lobe, right medial frontal lobe, left inferior parietal lobe, bilateral precuneus, bilateral temporal lobe, and parahippocampal gyrus (PHG).Conclusions: Herein, we confirmed the presence of DMN-specific damage in MCI, which is helpful in revealing pathology of MCI and further explore mechanisms of conversion from MCI to AD. Therefore, we provide a new specific target and direction for delaying conversion from MCI to AD.
Introduction The current diagnosis of Parkinson's disease (PD) comorbidity with depression (DPD) largely depends on clinical evaluation. However, the modality may tend to lack precision in detecting PD with depression. A radiomic approach that combines functional connectivity and activity with clinical scores has the potential to achieve accurate and differential diagnosis between PD and DPD. Methods In this study, we aimed to employ the radiomic approach to extract large‐scale features of functional connectivity and activity for differentiating among DPD, PD with no depression (NDPD), and healthy controls (HC). We extracted 6,557 features of five types from all subjects including clinical characteristics, resting‐state functional connectivity (RSFC), amplitude of low‐frequency fluctuation (ALFF), regional homogeneity (ReHo), and voxel‐mirrored homotopic connectivity (VMHC). Lasso, random forest, and support vector machine (SVM) were implemented for feature selection and dimension reduction based on the training sets, and the prediction performance for different methods in the testing sets was compared. Results The results showed that nineteen features were selected for the group of DPD versus HC, 34 features were selected for the group of NDPD versus HC, and 17 features were retained for the group of DPD versus NDPD. In the testing sets, Lasso prediction achieved the accuracies of 0.95, 0.96, and 0.85 for distinguishing between DPD and HC, NDPD and HC, and DPD and NDPD, respectively. Random forest achieved the accuracies of 0.90, 0.82, and 0.90 for distinguishing between DPD and HC, NDPD and HC, and DPD and NDPD, respectively, while SVM yielded the accuracies of 1, 0.86 and 0.65 for distinguishing between DPD and HC, NDPD and HC, and DPD and NDPD, respectively. Conclusions By identifying aberrant functional connectivity and activity as potential biomarkers, the radiomic approach facilitates a deeper understanding and provides new insights into the pathophysiology of DPD to support the clinical diagnosis with high prediction accuracy.
Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger evidence for the pathophysiology of cognitive impairment. Whether the altered patterns of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild cognitive impairment (vMCI) is largely unknown. The purpose of this study was to explore the ALFF/fALFF changes in the two diseases and to further explore whether they contribute to the diagnosis and differentiation of these diseases.Methods: We searched PubMed, Ovid, and Web of Science databases for articles on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the activation likelihood estimation (ALE) method, connectivity modeling based on coordinate meta-analysis and functional meta-analysis was carried out.Results: Compared with healthy controls (HCs), patients with aMCI showed increased ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC) in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate gyrus (CG).Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may help understand the pathophysiological mechanisms of these diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.