Apple leaf diseases seriously affect the sustainable production of apple fruit. Early infection monitoring of apple leaves and timely disease control measures are the key to ensuring the regular growth of apple fruits and achieving a high-efficiency economy. Consequently, disease detection schemes based on computer vision can compensate for the shortcomings of traditional disease detection methods that are inaccurate and time-consuming. Nowadays, to solve the limitations ranging from complex background environments to dense and small characteristics of apple leaf diseases, an improved Faster region-based convolutional neural network (Faster R-CNN) method was proposed. The advanced Res2Net and feature pyramid network architecture were introduced as the feature extraction network for extracting reliable and multi-dimensional features. Furthermore, RoIAlign was also employed to replace RoIPool so that accurate candidate regions will be produced to address the object location. Moreover, soft non-maximum suppression was applied for precise detection performance of apple leaf disease when making inferences to the images. The improved Faster R-CNN structure behaves effectively in the annotated apple leaf disease dataset with an accuracy of 63.1% average precision, which is higher than other object detection methods. The experiments proved that our improved Faster R-CNN method provides a highly precise apple leaf disease recognition method that could be used in real agricultural practice.
Plant disease is an important factor affecting crop yield. With various types and complex conditions, plant diseases cause serious economic losses, as well as modern agriculture constraints. Hence, rapid, accurate, and early identification of crop diseases is of great significance. Recent developments in deep learning, especially convolutional neural network (CNN), have shown impressive performance in plant disease classification. However, most of the existing datasets for plant disease classification are a single background environment rather than a real field environment. In addition, the classification can only obtain the category of a single disease and fail to obtain the location of multiple different diseases, which limits the practical application. Therefore, the object detection method based on CNN can overcome these shortcomings and has broad application prospects. In this study, an annotated apple leaf disease dataset in a real field environment was first constructed to compensate for the lack of existing datasets. Moreover, the Faster R-CNN and YOLOv3 architectures were trained to detect apple leaf diseases in our dataset. Finally, comparative experiments were conducted and a variety of evaluation indicators were analyzed. The experimental results demonstrate that deep learning algorithms represented by YOLOv3 and Faster R-CNN are feasible for plant disease detection and have their own strong points and weaknesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.