An Optical Burst Switching (OBS) network is vulnerable to Burst Header Packet (BHP) flooding attack. In flooding attacks, edge nodes send BHPs at a high rate to reserve bandwidth for unrealized data bursts, which leads to a waste of bandwidth, a decrease in network performance, and massive data loss. Machine learning techniques are utilized to detect this attack in the OBS network. In this paper, we propose a particle swarm optimization–support vector machine (PSO-SVM) model for detecting BHP flooding attacks, in which the PSO is used to optimize the parameters of the SVM. We use the dataset provided by the UCI warehouse to train and test the model. The experimental results show that the detection accuracy of the PSO-SVM model reaches 95.0%, which is 9.4%, 9.6%, 20.7%, 8% higher than naïve Bayes, SVM, k-nearest neighbor, and decision tree. Although DCNN outperforms our model, it requires more processing and training time. Collectively, our approach is effective and high-efficiency in detecting flooding attacks in optical burst switching networks and maintaining network stability and security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.