Background Esophageal carcinoma is one of the most fatal cancers worldwide. In China, over 90% of esophageal cancer patients are diagnosed with esophageal squamous cell carcinoma (ESCC). Currently, the survival and prognosis of ESCC patients are not satisfying because of insufficient early screening and lack of efficacious medication. Accumulating studies have suggested that antibody‐drug conjugates (ADC) represent a promising antitumor strategy. Method Here, we carried out a specific membrane proteome screening with ESCC patients' samples using a high‐throughput antibody microarray to uncover potential targets for ADC development. Candidates were validated with expression and cytotoxicity evaluation both in vitro and in vivo. Results Our data have shown that the Piezo‐Type Mechanosensitive Ion Channel Component 1 (PIEZO1) is particularly overexpressed in human ESCC tumors and can be efficiently internalized when bound with its monoclonal antibody. Furthermore, the PIEZO1 antibody combined with monomethyl auristatin E (MMAE) can specifically kill PIEZO1 high‐expressed ESCC tumor cells by inducing cell cycle arrest and apoptosis. More importantly, the Anti‐PIEZO1‐MMAE can significantly suppress tumor progression in ESCC xenograft tumor models without any obvious side effects. Conclusion Taken together, our work demonstrates that PIEZO1 is a promising target to develop ADCs for human ESCC treatment, providing a new strategy for ESCC patients' personalized therapy.
Myelodysplastic syndromes (MDS) are characterized by daunting genetic heterogeneity and a high risk of leukemic transformation, which presents great challenges for clinical treatment. To identify new chemicals for MDS, we screened a panel of FDA-approved drugs and verified the neutrophil hyperplasia inhibiting role of 17β-estradiol (E2, a natural estrogen) in several zebrafish MDS models (pu.1G242D/G242D, irf8Δ57Δ/57 and c-mybhyper). However, the protective mechanism of estrogen in the development of hematological malignancies remains to be explored. Here, analyzing the role of E2 in the development of each hematopoietic lineage, we found that E2 exhibited a specific neutrophil inhibiting function. This neutrophil inhibitory function of E2 is attributed to its down-regulation of c-myb, which leads to accelerated apoptosis and decreased proliferation of neutrophils. We further showed that knockdown of hif1α could mimic the neutrophil inhibiting role of E2, and hif1α overexpression could reverse the protective function of E2. Collectively, our findings highlight the protective role of E2 on MDS by inhibiting hif1α-c-myb pathway, suggesting that E2 is a promising and effective drug for hematopoietic tumors associated with abnormal neutrophil hyperplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.