Membrane capacitive deionization (MCDI) has emerged as a promising electric-field-driven technology for brackish water desalination and specific salt or charged ion separation. The use of carbon-based or pseudocapacitive materials alone for MCDI usually suffers from the drawbacks of low desalination capacity and poor cycling stability due to their limited accessible adsorption sites and obstructed charge-carrier diffusion pathways. Therefore, developing a hybrid electrode material with multiple charge storage mechanisms and continuous electron/ion transport pathways that can synergistically improve its specific capacitance and cycling durability has currently become one of the most critical technical demands. Herein, we developed a novel hierarchically architectured hybrid electrode by first spinning MXene into polyacrylonitrile (PAN)-based carbon nanofibers (MCNFs) to obtain a highly conductive carbon nanocomposite framework. The excellent spatial support structure can effectively prevent the dense packing of Cl–- and DBS–-doped polypyrrole (PPy) molecular chains during the following electrodeposition process, which not only ensures the efficient transport of electrons in the continuous hybrid carbon nanofibrous skeleton but also provides abundant accessible sites for ion adsorption and insertion. The obtained self-supporting membrane electrodes (MCNF@PPy+Cl– and MCNF@PPy+DBS–) have the advantages of outstanding specific capacitance (318.4 and 153.9 F/g, respectively), low charge transfer resistance (10.0 and 5.3 Ω, respectively), and excellent cycling performance (78% and 90% capacitance retention ratios, respectively, after 250 electrochemical cycles). Furthermore, the asymmetrical membrane electrodes showed a superior desalination capacity of 91.2 mg g–1 in 500 mg/L NaCl aqueous solution and obvious divalent ion (Ca2+, Mg2+) selective adsorption properties in high-salt water from the cooling towers of thermal power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.