During crystallization, conformational changes are often accompanied by the formation of interactions. Terahertz (THz) spectroscopy exhibits strong responses to the crystalline poly(lactic acid) (PLA). Therefore, we estimate the relative crystallinity and investigate the effect of conformational transition on the vibration of PLA by THz spectroscopy. By comparing with the results of X-ray diffraction (XRD) and differential scanning calorimetry (DSC), the validity of THz spectroscopy to calculate crystallinity is verified. Furthermore, the peak intensity of PLA at 2.01 THz increases with crystallinity. Combined with Fourier transform infrared spectroscopy (FTIR), the vibrational intensity of PLA at 2.01 THz is highly correlated with the contribution of gt conformation, showing a linear relationship. In addition, the vibrational peak of PLA also reflects the interchain interactions. We believe that the increase in peak intensity with increasing crystallinity originates from the effect of the dipole−dipole interactions between the carbonyl groups. Our study demonstrates the ability of THz spectroscopy to estimate the crystallinity of PLA, and the peak at 2.01 THz shows conformational and interaction sensitivities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.