The dimensional accuracy of shells and binders of investment casting which incorporation with selective laser sintering is investigated. The results show that the dimensional accuracy of colloidal silica is higher than that of ethyl silicate, and the dimensional variation rate of investment casting shells produced with colloidal silica is much lower than ethyl silicate shells. Moreover, colloidal silica possesses better performance on environmental protection and production cost control. These indicate that the comprehensive properties of colloidal silica are better than that of ethyl silicate. Meanwhile, the average dimensional variation rate of the single colloidal silica shell and the ethyl silicate-colloidal silica alteration shell was almost identical and it was much lower than that of the other shells which were produced in this study. This means two kinds of shells are optimized in all five types of shells studied in the aspect of dimensional accuracy. The unique properties of two shells show clearly direction to choose the type of shell.
The solidification pressure is one of the most important factors in the counter-gravity casting process. Through testing and analyzing the microstructures of aluminum alloy castings under different solidification pressure, the effect of different solidification pressure on the secondary dendrite arm spacing and grain size is studied. The results show that with the increase of the solidification pressure, the secondary dendrite arm spacing and the grain size of aluminum alloy decreases. When the solidification pressure is 250 KPa, the secondary dendrite arm of aluminum alloy is thick, the SDAS is 37.9μm, but when the solidification pressure increases to 450 KPa, the refinement of grain is obviously, and the SDAS is 20.7μm, which is reduced by 45.3% comparing to solidification under 250 KPa. Moreover, when solidification pressure higher, the effect of feeding force becomes more evident, and the dendrite is broken when the feeding force higher than the strength of dendrite. Therefore, the grain size becomes more and more uniform and thin, and the (SDAS) of aluminum alloy are more and more small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.