Because of the nitrogen pollution problem in groundwater, the migration conversion mechanism of nitrogen in groundwater level fluctuations was analyzed. Technology and methods through indoor experiments and theoretical analysis were used to study coarse sand, medium sand, and fine sand groundwater level fluctuation in the aeration zone and saturated zone under the situation of nitrogen distribution characteristics, revealing groundwater level fluctuation with the nitrogen migration mechanism. The experimental results showed that the variation range of the nitrate-nitrogen (NO3−−N) concentration with the water level is medium sand > fine sand > coarse sand. The ammonium nitrogen (NH4+−N) concentration showed a downward trend after water level fluctuations, and there were more apparent fluctuations in coarse sand and medium sand. The nitrite nitrogen (NO2−−N) in coarse sand and medium sand first increased the water level and then gradually reached a balance. The sampling points below the water level in fine sand showed a downward trend with fluctuation of the water level, and then gradually reached equilibrium. The results provide a scientific basis for the remediation and treatment of soil and groundwater pollution.
The fluctuation of groundwater causes a change in the groundwater environment and then affects the migration and transformation of pollutants. To study the influence of water level fluctuations on nitrogen migration and transformation, physical experiments on the nitrogen migration and transformation process in the groundwater level fluctuation zone were carried out. A numerical model of nitrogen migration in the Vadose zone and the saturated zone was constructed by using the software HydrUS-1D. The correlation coefficient and the root mean square error of the model show that the model fits well. The numerical model is used to predict nitrogen migration and transformation in different water level fluctuation scenarios. The results show that, compared with the fluctuating physical experiment scenario, when the fluctuation range of the water level increases by 5 cm, the fluctuation range of the nitrogen concentration in the coarse sand, medium sand and fine sand media increases by 37.52%, 31.40% and 21.14%, respectively. Additionally, when the fluctuation range of the water level decreases by 5 cm, the fluctuation range of the nitrogen concentration in the coarse sand, medium sand and fine sand media decreases by 36.74%, 14.70% and 9.39%, respectively. The fluctuation of nitrogen concentration varies most significantly with the amplitude of water level fluctuations in coarse sand; the change in water level has the most significant impact on the flux of nitrate nitrogen and has little effect on the change in nitrite nitrogen and ammonium nitrogen, and the difference in fine sand is the most obvious, followed by medium sand, and the difference in coarse sand is not great.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.