We investigated the performance of viscoelastic surfactant (VES) solution when applied in treatment on the uninvaded matrix using core flooding tests to analyze the impact of VES/CaCl2 concentration on fluid viscosity. In this paper, core samples from Tahe carbonate reservoir, with an average permeability less than 0.02 × 10−3 μm−2 and a small average porosity in the range of approximately 0.04–5.24% are used in the experiments. Computed tomography (CT) scanning is used to provide a detailed description of inner structure variation of cores after the acid system treatment. The results confirmed that a large pressure difference contributed to fracture propagation and the relative permeability of water increased significantly after the treatment. It was also found that higher concentrations of VES and/or Ca2+ induced higher viscosity and a stronger fracturing effect, while a lower concentration improved the reaction rates and etching effect, generating small worm holes inside the core. Foam in-situ produced during the etching process is the major contributor to the fluid viscosity enhancement. The permeability of fracture formed on the surface of the core is more sensitive to the confining pressure. These findings can help better understand the rheological properties of the acid system and etching and fracturing mechanisms during acid treatment, and which provides instructions for field implementation.
In order to overcome the problems of poor timeliness and low accuracy of mining existing in traditional methods, this paper designs a bit-object based maximum frequent pattern mining method for intensive cloud computing data. After judging the support number according to the bit object of the maximum frequent pattern, the intensive cloud computing data is accurately collected according to the difference between the load value of cloud data and the true value of load, so as to improve the accuracy of subsequent mining results, and then the maximum frequent pattern of data is accurately mined by combining the bit object. Experimental results show that the maximum time to generate mining results is only 4.6 s, the maximum bit error rate of output results is only 7%, and the maximum memory occupancy is only 3.90%. The above results show that this method is more suitable for practical excavation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.