Understanding moisture information ahead of tropical cyclone (TC) convection is very important for predicting TC track, intensity, and precipitation. The advanced Himawari imager onboard the Japanese Himawari‐8/‐9 satellite can provide high spatial and temporal resolution moisture information. Three‐layered precipitable water (LPW) with its three water vapor absorption infrared bands can be assimilated to generate better understanding and prediction of TC evolution. The impacts of LPW assimilation in the Weather Research and Forecasting model with nine combinations of physical parameterization schemes, including three cumulus parameterization (CP) and three microphysics parameterization (MP) schemes on TC prediction, have been comprehensively analyzed using Typhoon Hato as a case study. The results indicate that LPW assimilation reduces the average track error and speed up TC movement by better adjustment of the atmospheric circulation fields via changing the vertical structure of moisture and thermal profile. The track forecasts retain sensitivity to CP schemes after LPW assimilation. Also, LPW assimilation improves TC intensity prediction because the latent heat release process is accurately adjusted. It has been revealed that LPW assimilation can weaken the intensity sensitivity to MP schemes more than to CP schemes. Skill scores were used to evaluate precipitation forecasts after Hato's landfall. The results indicate that heavy precipitation forecasts are more sensitive to the choice of MP schemes. After LPW assimilation, the equitable threat scores among different results become similar and all forecast skills are increased. In addition, group statistic results with different initial time show the same conclusions.
A novel high-sensitivity fiber-optic temperature sensing system based on the optical pulse correlation principle is proposed. The optical pulse correlation state corresponding to the time drift in fiber-optic transmission lines is detected by a second harmonic generation (SHG) crystal. This sensing system is combined with 3- and 100-m-long monitoring fibers using a time-division multiplexer (TDM) combination technique. By using the linear trend-line method to combine the correlation values of short and long monitoring fibers, a high-temperature sensitivity of 0.001 °C/mV and an approximatly 20 °C dynamic measurable range are successfully achieved.
The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.