Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin repeats. Domain-based analyses have recently categorized this protein as an epithelial representative of the nebulin family, which also includes the actin binding, muscle-specific proteins,nebulin, nebulette and N-RAP.In this study, we show that lasp-1 binds to non-muscle filamentous (F)actin in vitro in a phosphorylation-dependent manner. In addition, we provide evidence that lasp-1 is concentrated within focal complexes as well as in the leading edges of lamellipodia and the tips of filopodia in non-transformed gastric fibroblasts. In actin pull-down assays, the apparent Kd of bacterially expressed his-tagged lasp-1 binding to F-actin was 2 μM with a saturation stoichiometry of ∼1:7. Phosphorylation of recombinant lasp-1 with recombinant PKA increased the Kd and decreased the Bmax for lasp-1 binding to F-actin. Microsequencing and site-directed mutagenesis localized the major in vivo and in vitro PKA-dependent phosphorylation sites in rabbit lasp-1 to S99 and S146. BLAST searches confirmed that both sites are conserved in human and chicken homologues. Transfection of lasp-1 cDNA encoding for alanine substitutions at S99 and S146, into parietal cells appeared to suppress the cAMP-dependent translocation of lasp-1 to the intracellular canalicular region. In gastric fibroblasts, exposure to the protein kinase C activator, PMA, was correlated with the translocation of lasp-1 into newly formed F-actin-rich lamellipodial extensions and nascent focal complexes. Since lasp-1 does not appear to be phosphorylated by PKC,these data suggest that other mechanisms in addition to cAMP-dependent phosphorylation can mediate the translocation of lasp-1 to regions of dynamic actin turnover. The localization of lasp-1 to these subcellular regions under a range of experimental conditions and the phosphorylation-dependent regulation of this protein in F-actin rich epithelial cells suggests an integral and possibly cell-specific role in modulating cytoskeletal/membrane-based cellular activities.
Psoriasis is a common skin disorder characterized by hyperproliferation and aberrant differentiation of epidermal keratinocytes and inflammation. We previously showed that phosphatidylglycerol (PG) can regulate keratinocyte function and suppress skin inflammation. Based on data suggesting that PG can inhibit toll-like receptor (TLR) activation induced by microorganisms and their components, we determined whether PG can inhibit TLR activation in response to antimicrobial peptides. These peptides, which are up-regulated in psoriasis, are known to function as danger-associated molecular patterns (i.e., DAMPs) to activate TLRs and the innate immune system. Because S100A9 is elevated in psoriatic skin and in animal models of psoriasis, we selected S100A9 as a representative antimicrobial peptide DAMP. We showed that in primary keratinocytes and a macrophage cell line, PG suppressed inflammatory mediator production induced by recombinant S100A9 functioning through both TLR2 and TLR4. In addition, PG, but not phosphatidylcholine, inhibited downstream S100A9-elicited TLR2 and NF-kB activation. These results, to our knowledge previously unreported, show PG's ability to inhibit DAMP-induced TLR activation, thereby reducing inflammatory signals. In addition, topical PG ameliorated skin lesions and inflammation in a mouse model of psoriasis. Together, these results suggest the possibility of developing PG as a therapy for psoriasis.
Huntingtin interacting protein 1 related (Hip1r) is an F-actin-and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the gastric epithelium in Hip1r-deficient mice. Electron microscopy revealed abnormal apical canalicular membranes and loss of tubulovesicles in mutant parietal cells, suggesting that Hip1r is necessary for the normal trafficking of these secretory membranes. Accordingly, acid secretory dynamics were altered in mutant parietal cells, with enhanced activation and acid trapping, as measured in isolated gastric glands. At the whole-organ level, gastric acidity was reduced in Hip1r-deficient mice, and the gastric mucosa was grossly transformed, with fewer parietal cells due to enhanced apoptotic cell death and glandular hypertrophy associated with cellular transformation. Hip1r-deficient mice had increased expression of the gastric growth factor gastrin, and mice mutant for both gastrin and Hip1r exhibited normalization of both proliferation and gland height. Taken together, these studies demonstrate that Hip1r plays a significant role in gastric physiology, mucosal architecture, and secretory membrane dynamics in parietal cells.
In order to understand the regulatory role of protein kinase C (PKC) in secretory epithelia, it is necessary to identify and characterize specific downstream targets. We previously identified one such protein in studies of gastric parietal cells. This protein was referred to as pp66 because it migrated with an apparent molecular mass of 66 kDa on SDS-polyacrylamide gels. The phosphorylation of pp66 is increased by the cholinergic agonist, carbachol, and by the PKC activator, phorbol-12-myristate-13-acetate, in a calcium-independent manner. In this study, we have purified pp66 to homogeneity and cloned the complete open reading frame. GenBank TM searches revealed a 45% homology with the Dictyostelium actin-binding protein, coronin, and ϳ67% homology with the previously cloned human and bovine coronin-like homologue, p57. pp66 appears to be most highly expressed in the gastrointestinal mucosa and in kidney and lung. Confocal microscopic studies of an enhanced green fluorescent protein fusion construct of pp66 in cultured parietal cells and in Madin-Darby canine kidney cells indicate that pp66 preferentially localizes in F-actin-rich regions. On the basis of our findings, we propose that pp66 may play an important, PKC-dependent role in regulating membrane/cytoskeletal rearrangements in epithelial cells. We have tentatively named this protein coronin se , because it appears to be highly expressed in secretory epithelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.