We use the jump problem technique developed in a recent paper [GKN17] to compute the variational formula of any stable differential and its periods to arbitrary precision in plumbing coordinates. In particular, we give the explicit variational formula for the degeneration of the period matrix, easily reproving the results of Yamada [Yam80] for nodal curves with one node and extending them to an arbitrary stable curve. Concrete examples are included.We also apply the same technique to give an alternative proof of the sufficiency part of the theorem in [BCGGM16] on the closures of strata of differentials with prescribed multiplicities of zeroes and poles.
Using the results of [DPFSM14], we determine an explicit modular form defining the locus of plane quartics with a hyperflex among all plane quartics. As a result, we provide a direct way to compute the divisor class of the locus of plane quartics with a hyperflex within M 3 , first obtained in [Cuk89]. Moreover, the knowledge of such an explicit modular form also allows us to describe explicitly the boundary of the hyperflex locus in M 3 . As an example we show that the locus of banana curves (two irreducible components intersecting at two nodes) is contained in the closure of the hyperflex locus. We also identify an explicit modular form defining the locus of Clebsch quartics and use it to recompute the class of this divisor, first obtained in [OS11].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.