Rhizoctonia solani, one of the most detrimental necrotrophic pathogens, causes rice sheath blight and poses a severe threat to production. Focus on the function of effectors secreted by necrotrophic pathogens during infection has grown rapidly in recent years. However, little is known about the virulence and mechanisms of these proteins. In this study, we performed functional studies on putative effectors in R. solani and revealed that AGLIP1 out of 13 putative effectors induced cell death in Nicotiana benthamiana. AGLIP1 was also demonstrated to trigger cell death in rice protoplasts. The predicted lipase active sites and signal peptide (SP) of this protein were required for the cell death-inducing ability. AGLIP1 was greatly induced during R. solani infection in rice sheath. The AGLIP1’s virulence function was further demonstrated by transgenic technology. The pathogenesis-related genes induced by pathogen-associated molecular pattern and bacteria were remarkably inhibited in AGLIP1-expressing transgenic Arabidopsis lines. Ectopic expression of AGLIP1 strongly facilitated disease progression in Arabidopsis caused by the type III secretion system-defective mutant from Pseudomonas syringae pv. tomato DC3000. Collectively, these results indicate that AGLIP1 is a possible effector that plays a significant role in pathogen virulence through inhibiting basal defenses and promoting disease development in plants.
Rice false smut (RFS), caused by Ustilaginoidea virens, is one of the most detrimental rice fungal diseases and pose a severe threat to rice production and quality. Effectors in U. virens often act as a set of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of each effector in U. virens need to be further explored. Here, we performed multiple alignment analysis and demonstrated a small secreted hypersensitive response-inducing protein (hrip), named UvHrip1, was highly conserved in fungi. The predicted SP of UvHrip1 was functional, which guided SUC secreted from yeast and was recognized by plant cells. The localization of UvHrip1 was mainly in the nucleus and cytoplasm monitored through the GFP fusion protein in Nicotiana benthamiana cells. uvhrip1 was drastically up-regulated in the susceptible cultivar LYP9 of rice during the pathogen infection, while did not in the resistant cultivar IR28. We also proved that UvHrip1 suppressed the mammalian BAX-induced necrosis-like defense symptoms in N. benthamiana. Furthermore, patterns of expression of defense-related genes, OsPR1#012 and OsPR10b, were regulated over U. virens infection in rice. Collectively, our data demonstrated that infection of U. virens suppresses defense-related genes expression and UvHrip1 was most likely a core effector in regulating plant immunity.
Ustilaginoidea virens, which causes rice false smut (RFS), is one of the most detrimental rice fungal diseases and poses a severe threat to rice production and quality. Effectors in U. virens often act as a group of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of individual effectors in U. virens need to be further explored. Here, we demonstrated a small secreted hypersensitive response-inducing protein (hrip), named UvHrip1, which was highly conserved in U. virens isolates. UvHrip1 was also proven to suppress necrosis-like defense symptoms in N. benthamiana induced by the oomycete elicitor INF1. The localization of UvHrip1 was mainly in the nuclei and cytoplasm via monitoring the UvHrip1-GFP fusion protein in rice cells. Furthermore, Y2H and BiFC assay demonstrated that UvHrip1 interacted with OsHGW, which is a critical regulator in heading date and grain weight signaling pathways in rice. Expression patterns of defense- and heading date-related genes, OsPR1#051 and OsMYB21, were down-regulated over U. virens infection in rice. Collectively, our data provide a theory for gaining an insight into the molecular mechanisms underlying the UvHrip1 virulence function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.