The Richards equation plays an important role in the study of agro-hydrological systems. It models the water movement in soil in the vadose zone, which is driven by capillary and gravitational forces. Its states (capillary potential) and parameters (hydraulic conductivity, saturated and residual soil moistures and van Genuchten-Mualem parameters) are essential for the accuracy of mathematical modeling, yet difficult to obtain experimentally. In this work, an estimation approach is developed to estimate the parameters and states of Richards equation simultaneously. In the proposed approach, parameter identifiability and sensitivity analysis are used to determine the most important parameters for estimation purpose. Three common estimation schemes (extended Kalman filter, ensemble Kalman filter and moving horizon estimation) are investigated. The estimation performance is compared and analyzed based on extensive simulations.
An appropriate subsystem configuration is a prerequisite for a successful distributed control/state estimation design. Existing subsystem decomposition methods are not designed to handle simultaneous distributed estimation and control. In this article, we address the problem of subsystem decomposition of general nonlinear process networks for simultaneous distributed state estimation and distributed control based on community structure detection. A systematic procedure based on modularity is proposed. A fast folding algorithm that approximately maximizes the modularity is used in the proposed procedure to find candidate subsystem configurations. Two chemical process examples of different complexities are used to illustrate the effectiveness and applicability of the proposed approach.State variables in bold cannot be estimated using the available measurements of the corresponding subsystem. "NA" means that no variable is assigned to the corresponding subsystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.