A hybrid method of the Polak-Ribière-Polyak (PRP) method and the Wei-Yao-Liu (WYL) method is proposed for unconstrained optimization pro- blems, which possesses the following properties: i) This method inherits an important property of the well known PRP method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening; ii) The scalar holds automatically; iii) The global convergence with some line search rule is established for nonconvex functions. Numerical results show that the method is effective for the test problems
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.