Orderly arranged Silicon carbide (SiC)/epoxy (EP) composites were fabricated. SiC was made magnetically responsive by decorating the surface with iron oxide (Fe3O4) nanoparticles. Three treatment methods, including without magnetization, pre-magnetization and curing magnetization, were used to prepare SiC/EP composites with different filler distributions. Compared with unmodified SiC, magnetic SiC with core-shell structure was conducive to improve the breakdown strength of SiC/EP composites and the maximum enhancement rate was 20.86%. Among the three treatment methods, SiC/EP composites prepared in the curing-magnetization case had better comprehensive properties. Under the action of magnetic field, magnetic SiC were orderly oriented along the direction of an external field, thereby forming SiC chains. The magnetic alignment of SiC restricted the movement of EP macromolecules or polar groups to some extent, resulting in the decrease in the dielectric constant and dielectric loss. The SiC chains are equivalent to heat flow channels, which can improve the heat transfer efficiency, and the maximum improvement rate was 23.6%. The results prove that the orderly arrangement of SiC had a favorable effect on dielectric properties and thermal conductivity of SiC/EP composites. For future applications, the orderly arranged SiC/EP composites have potential for fabricating insulation materials in the power electronic device packaging field.
The cross-linking effects of cross-linked ethylene-tetrafluoroethylene copolymer (XETFE)-insulated cables at different electron beam radiation doses were analyzed in this paper. Evaluation of the mechanical performance of the cables revealed that the highest tensile and breaking elongation was achieved at a radiation dose of 8 × 10 4 Gy and that XETFE had a good resistance to extreme electron beam irradiation. This is attributed to the cross-linking effects induced by electron beam irradiation, and this takes full advantage of the strength of molecular chain crosslink to each other. The crystallization kinetics of XETFE at different electron beam radiation doses were studied in detail in terms of the non-isothermal and isothermal crystallization processes. The results indicated that the crystallinity of the XETFE domain increased with an increase in the radiation dose as a result of heterogeneous nucleation. Moreover, the highest ΔE a was obtained, indicating that XETFE absorbed some energy at a radiation dose of 8 × 10 4 Gy. These kinetic parameters had help in carrying out a comprehensive evaluation of the performance of XETFEinsulated cables for aerospace applications. Moreover, the fluoride precipitation observed in this study indicated that upon electron beam irradiation, XETFE could internally produce hydrogen fluoride, which is corrosive to metals. Thus, optimizing the radiation dose was necessary to achieve the desired performance. We could believe that the improvement for properties of electron beam XETFE insulation cables would expand their range of applications in the aerospace field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.