In an attempt to evaluate the effects of thermal treatment on wood cell walls (CWs), Masson pine (Pinus massonianaLamb.) wood was thermally modified (TM) at 150, 170 and 190°C for 2, 4 and 6 h, respectively. The chemical properties, cellulose crystallinity (CrI) and micromechanics of the control and thermally modified wood (TMW) were analyzed by wet chemical analysis, X-ray diffraction and nanoindentation. The relative lignin content andCrI increased after the TM partly degraded the amorphous wood polymers. The relative lignin content was higher in TMW and the equilibrium moisture content decreased. Moreover, the elastic modulus (Er) and hardness (H) of TMW were lowered along with the creep ratio decrement (CIT) of CWs. However, a severe treatment (e.g. 190°C/6 h) may negatively affect the mechanical properties of CWs caused by the partial degradation of hemicelluloses and also cellulose.
The local chemistry and mechanics of the control and phenol formaldehyde (PF) resin modified wood cell walls were analyzed to illustrate the modification mechanism of wood. Masson pine (Pinus massoniana Lamb.) is most widely distributed in the subtropical regions of China. However, the dimensional instability and low strength of the wood limits its use. Thus, the wood was modified by PF resin at concentrations of 15%, 20%, 25%, and 30%, respectively. The density, surface morphology, chemical structure, cell wall mechanics, shrinking and swelling properties, and macro-mechanical properties of Masson pine wood were analyzed to evaluate the modification effectiveness. The morphology and Raman spectra changes indicated that PF resin not only filled in the cell lumens, but also penetrated into cell walls and interacted with cell wall polymers. The filling and diffusing of resin in wood resulted in improved dimensional stability, such as lower swelling and shrinking coefficients, an increase in the elastic modulus (Er) and hardness (H) of wood cell walls, the hardness of the transverse section and compressive strength of the wood. Both the dimensional stability and mechanical properties improved as the PF concentration increased to 20%; that is, a PF concentration of 20% may be preferred to modify Masson pine wood.
To evaluate the effects of phenol formaldehyde (PF) resin modification on wood cell walls, Masson pine (Pinus massoniana Lamb.) wood was impregnated with PF resin at the concentrations of 15%, 20%, 25%, and 30%, respectively. The penetration degree of PF resin into wood tracheids was quantitatively determined using confocal laser scanning microscopy (CLSM). The micromechanical properties of the control and PF-modified wood cell walls were then analyzed by the method of quasi-static nanoindentation and dynamic modulus mapping techniques. Results indicated that PF resin with low molecular weight can penetrate deeply into the wood tissues and even into the cell walls. However, the penetration degree decreased accompanying with the increase of penetration depth in wood. Both the quasi-static and dynamic mechanics of wood cell walls increased significantly after modification by the PF resin at the concentration less than 20%. The cell-wall mechanics maintained stable and even decreased as the resin concentration was increased above 20%, resulting from the increasing bulking effects such as the decreased crystallinity degree of cellulose. Furthermore, the mechanics of cell walls in the inner layer was lower than that in the outer layer of PF-modified wood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.