Circle detection is a fundamental problem in computer vision. However, conventional circle detection algorithms are usually time-consuming and sensitive to noise. In order to solve these shortcomings, we propose a fast circle detection algorithm based on information compression. First, we introduce the idea of information compression, which compresses the circular information on the image into a small number of points while removing some of the noise through sharpness estimation and orientation filtering. Then, the circle parameters stored in the information point are obtained by the average sampling algorithm with a time complexity of O(1) to obtain candidate circles. Finally, we set different constraints on the complete circle and the defective circle according to the sampling results and find the true circle from the candidate circles. The experimental results on the three datasets show that our method can compress the circular information in the image into 1% of the information points, and compared to RHT, RCD, Jiang, Wang and CACD, Precision, Recall, Time and F-measure are greatly improved.
It is an urgent problem to know how to quickly and accurately measure the length of irregular curves in complex background images. To solve the problem, we first proposed a quasi-bimodal threshold segmentation (QBTS) algorithm, which transforms the multimodal histogram into a quasi-bimodal histogram to achieve a faster and more accurate segmentation of the target curve. Then, we proposed a single-pixel skeleton length measurement (SPSLM) algorithm based on the 8-neighborhood model, which used the 8-neighborhood feature to measure the length for the first time, and achieved a more accurate measurement of the curve length. Finally, the two algorithms were tested and analyzed in terms of accuracy and speed on the two original datasets of this paper. The experimental results show that the algorithms proposed in this paper can quickly and accurately segment the target curve from the neon design rendering with complex background interference and measure its length.
Existing anchor-based Siamese trackers rely on the anchor’s design to predict the scale and aspect ratio of the target. However, these methods introduce many hyperparameters, leading to computational redundancy. In this paper, to achieve outstanding network efficiency, we propose a ConvNext-based anchor-free Siamese tracking network (CAFSN), which employs an anchor-free design to increase network flexibility and versatility. In CAFSN, to obtain an appropriate backbone network, the state-of-the-art ConvNext network is applied to the visual tracking field for the first time by improving the network stride and receptive field. Moreover, A central confidence branch based on Euclidean distance is offered to suppress low-quality prediction frames in the classification prediction network of CAFSN for robust visual tracking. In particular, we discuss that the Siamese network cannot establish a complete identification model for the tracking target and similar objects, which negatively impacts network performance. We build a Fusion network consisting of crop and 3Dmaxpooling to better distinguish the targets and similar objects’ abilities. This module uses 3DMaxpooling to select the highest activation value to improve the difference between it and other similar objects. Crop unifies the dimensions of different features and reduces the amount of computation. Ablation experiments demonstrate that this module increased success rates by 1.7% and precision by 0.5%. We evaluate CAFSN on challenging benchmarks such as OTB100, UAV123, and GOT-10K, validating advanced performance in noise immunity and similar target identification with 58.44 FPS in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.