Zellweger spectrum disorder (ZSD) results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele in the patient population that is associated with milder disease. In prior work using a PEX1-G843D/null patient fibroblast line expressing a green fluorescent protein (GFP) reporter with a peroxisome-targeting signal (GFP-PTS1), we demonstrated that treatments with the chemical chaperone betaine and flavonoid acacetin diacetate recovered peroxisome functions. To identify more effective compounds for preclinical investigation, we evaluated 54 flavonoids using this cell-based phenotype assay. Diosmetin showed the most promising combination of potency and efficacy (EC50 2.5 µM). All active 5′,7′-dihydroxyflavones showed greater average efficacy than their corresponding flavonols, whereas the corresponding flavanones, isoflavones, and chalcones tested were inactive. Additional treatment with the proteostasis regulator bortezomib increased the percentage of importrescued cells over treatment with flavonoids alone. Cotreatments of diosmetin and betaine showed the most robust additive effects, as confirmed by three independent functional assays in primary PEX1-G843D patient cells, but neither agent was active alone or in combination in patient cells homozygous for the PEX1 c.2097_2098insT null allele. Moreover, diosmetin treatment increased PEX1, PEX6, and PEX5 protein levels in PEX1-G843D patient cells, but none of these proteins increased in PEX1 null cells. We propose that diosmetin acts as a pharmacological chaperone that improves the stability, conformation, and functions of PEX1/PEX6 exportomer complexes required for peroxisome assembly. We suggest that diosmetin, in clinical use for chronic venous disease, and related flavonoids warrant further preclinical investigation for the treatment of PEX1-G843Dassociated ZSD.
K E Y W O R D SAAA ATPase, betaine, chaperone therapy, diosmetin, peroxisome biogenesis disorder, PEX1 J Cell Biochem. 2019;120:3243-3258.wileyonlinelibrary.com/journal/jcb
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.