Agropyron mongolicum Keng, a perennial diploid grass with high drought tolerance, belongs to the genus Agropyron, tribe Triticeae. It has made tremendous contributions toward reseeding natural pasture and seeding artificial grassland in China, especially in the arid and semi-arid area of northern China. As a wild relative of wheat, A. mongolicum is also a valuable resource for the genetic improvement of wheat crops. MicroRNAs are small non-coding RNA molecules ubiquitous in plants, which have been involved in responses to a wide variety of stresses including drought, salinity, chilling temperature. To date, little research has been done on drought-responsive miRNAs in A. mongolicum. In this study, two miRNA libraries of A. mongolicum under drought and normal conditions were constructed, and drought-responsive miRNAs were screened via Solexa high throughput sequencing and bioinformatic analysis. A total of 114 new miRNAs were identified in A. mongolicum including 53 conservative and 61 unconservative miRNAs, and 1393 target genes of 98 miRNAs were predicted. Seventeen miRNAs were found to be differentially expressed under drought stress, seven (amo-miR21, amo-miR62, amo-miR82, amo-miR5, amo-miR77, amo-miR44 and amo-miR17) of which were predicted to target on genes involved in drought tolerance. QRT-PCR analysis confirmed the expression changes of the seven drought related miRNAs in A. mongolicum. We then transformed the seven miRNAs into Arabidopsis thaliana plants, and three of them (amo-miR21, amo-miR5 and amo-miR62) were genetically stable. The three miRNAs demonstrated the same expression pattern in A. thaliana as that in A. mongolicum under drought stress. Findings from this study will better our understanding of the molecular mechanism of miRNAs in drought tolerance and promote molecular breeding of forage grass with improved adaption to drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.