This study aimed to achieve a clear understanding of the response characteristics of soft pack battery extrusion conditions under various situations. In this study, we chose a LiCoO2 battery as the research object of the extrusion experiment. First, the repeatability of the extrusion test on the battery was verified. A quasi-static extrusion test was conducted on three groups of batteries in the same state, and the load-displacement curves of the three groups of experimental batteries were almost the same. Then, the influence of the extrusion speed on the battery thermal runaway was studied. The results show that a different extrusion speed has a certain impact on the thermal runaway performance of the battery. The peak load of the battery is lower at a lower speed. Finally, the study found that every 20% change in SOC has a greater impact on the battery response under a squeeze. The larger the SOC, the more severe the battery thermal runaway. Through an analysis of multiple experimental cases, it is possible to have a deeper understanding of the temperature and voltage characteristics of lithium batteries when a thermal runaway occurs, which provides ideas for monitoring the trend of the thermal runaway of electric vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.