Increasing evidence demonstrated that noncoding RNAs (lncRNA, miRNA) play important roles in the cancer development. LncRNA NEAT1 functions as an oncogene in many cancers. However, the roles of NEAT1 in prostate cancer (PCa) remain largely unknown. In the present study, we aim to explore the molecular mechanism of NEAT1 in the development of PCa. We detected the expression levels of NEAT1 in a total of 16 benign prostatic hyperplasia tissues (BPH), 30 matched adjacent healthy control (HC) tissues and 30 PCa tissues, as well as PCa cell lines PC-3, DU-145, LNCaP and normal prostate epithelial cell line RWPE-1. The results showed that NEAT1 was significantly up-regulated in PCa tissues and PCa cell lines. Knockdown of NEAT1 can largely inhibit DU-145 and PC-3 cell growth and invasion. Bioinformatics analysis predicted NEAT1 has the binding site of miR-98-5p which can bind to the 3′UTR of HMGA2. And the expression level of NEAT1 has a positive correlation with HMAG2, while negative correlation with miR-98-5p in PCa cells. In addition, luciference assay and RNA immunoprecipitation (RIP) assay confirmed that NEAT1 can function as a competing endogenous RNA (ceRNA) by sponging miR-98-5p to active HMGA2. Moreover, silencing of HMGA2 can decrease the proliferation ability of PCa cells. Taken together, NEAT1/miR-98-5p/HMGA2 pathway is involved in the development and progression of PCa. NEAT1 could be recommended as a prognostic biomarker and inhibition of NEAT1 expression may be a promising strategy for PCa therapy.
Prostate cancer (PCa) is a devastating malignant disease with a poor prognosis. The aim of current study is to investigate the role of lncRNA-urothelial carcinoma associated 1 (UCA1) in the progression of PCa. We evaluated the expression levels of UCA1 in a total of 16 benign prostatic hyperplasia tissues (BPH) and 40 PCa tissues, as well as PCa cells. The functional regulatory effects of UCA1 were investigated using a series of cell function approaches. Our data showed that UCA1 is frequently overexpressed in PCa tissues compared with BPH tissues (P<0.01). Moreover, the higher expression of UCA1 was observed in patients with Gleason score ≥8 (P<0.05). In consistent, we found the expression levels of UCA1 was higher in the PCa cell lines PC-3, LnCaP, and DU-145 than in the normal prostate epithelial cell line RWPE-1 (P<0.01). Functionally, we found knockdown of UCA1 in PC-3 significantly suppressed cell growth and invasion of PC-3, while overexpression of UCA1 in DU-145 cells promote cell growth and invasion. Mechanistically, UCA1 overexpression permitted activation of CXCR4 oncogenes through inhibition of miR-204 activity, as evidenced by the positive association of these two genes with UCA1 levels and inverse correlation with miR-204 expression in PCa tissues. Luciferase activity assay further confirmed the targetting relationship between UCA1 and miR-204, CXCR4, and miR-204. The up-regulation of UCA1 in PC-3 cells significantly impaired the inhibitory effect of miR-204 on CXCR4 expression. Taken together, our research revealed that UCA1 works as an oncogene by targetting miR-204. The UCA1-miR-204-CXCR4 regulatory network regulated the growth and metastasis of PCa, providing new insight in the management of patients with such malignancy.
Bladder cancer (BC) is the most common urinary system malignancy worldwide. However, the molecular mechanisms underlying its progression remain largely unexplo red. Accumulating evidence indicates that the cancer-associated fibroblasts (CAFs), major constituents of tumor stroma, play a key role in tumor development. Herein, we have successfully isolated CAFs and paired normal fibroblasts (NFs) from bladder cancer tissues. We observed that the conditional medium from bladder cancer (CM-CAF) could significantly enhance cell proliferation (P < 0.01) and invasion capacity (P < 0.01) of bladder cancer cell lines T24 and J82, compared to the conditional medium from NFs or 5637 cells (bladder epithelial cell control). We subsequently identified cytok CM-CAF, and a further functional study showed CAFsignaling in T24 cells, and Wnt sig In addition, we treated T24 cells with CM-CAF alone, or together with Wnt signaling inhibitor XAV939. We found that the inhibition of Wnt signaling could sufficiently abolish the oncogenic effect of CAFs on bladder cancer. In conclusion, our data revealed a novel mechanism that CAFs promote cell proliferation and invasion of human BC cells through Inhibition of the Wnt signaling pathway may provide a promising target to block the interaction between CAF and bladder cancer cells.
Background. Castration-resistant prostate cancer (CRPC), one of the prostate cancers, is a medical conundrum around the world. Some studies have demonstrated that many long noncoding RNAs in exosomes are very important in many types of cancer, including prostate cancer. However, until now, the function of exosomes in the occurrence and development of CRPC has not been reported. Methods. In vitro, cell coculture was used in LNCap cells and PC-3 cells, while the isolation and purification of exosomes and the subsequent treatment assays were used in functional studies. In vitro assays were performed to detect the transformation of ADPC cells (androgen-dependent prostate cancer) into AIPC cells (androgen-independent prostate cancer). Subsequently, a lncRNA-sequencing assay was performed to detect different lncRNA expression profiles in ADPC cells cocultured with or without AIPC exosomes. The role of LINC01213 was analysed by a TCGA database after silencing the expression of LINC01213. CCK-8, qRT-PCR, and Western blotting studies were performed to analyse the possible mechanism by which exosomes participate in prostate cancer progression. Results. In the coculture system, ADPC cells acquired androgen deprivation tolerance through exosome-mediated intercellular communication. Exosomes secreted by AIPC cells can promote the transformation of ADPC cells into androgen-independent cells in vitro and in vivo. lncRNA sequencing showed that LINC01213 was upregulated in exosomes derived from AIPC cell lines. The rescue experiments were preformed, and the results revealed that most of the functions of LINC01213 were performed by Wnt/β-catenin. Conclusions. All the findings showed that exosomes play a key role in CRPC progression by upregulating LINC01213 and activating Wnt/β-catenin signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.