Summary The spatial heterogeneity of limiting soil resources is an essential factor determining ecosystem processes and function. It has been reported that large herbivores can strongly impact the variation and spatial distribution pattern of soil nitrogen (N). However, it remains unclear how large herbivores affect soil spatial heterogeneity and whether this influence is dependent on plant community diversity. Here we examined effects of different herbivore assemblages [no grazing; cattle grazing (CG); sheep grazing (SG); and mixed grazing (MG) of cattle and sheep] on soil N spatial heterogeneity in grasslands with high and low pre‐grazing plant diversity in an eastern Eurasian steppe. We found that herbivore grazing generated and maintained spatial patterns of soil nutrients, depending on herbivore assemblage and the level of pre‐grazing plant diversity. CG increased the spatial heterogeneity of soil available N in Leymus chinensis‐dominated steppe meadows, which were independent of pre‐grazing plant diversity. However, the effects of SG and MG strongly depended on grassland plant diversity, with an increased spatial heterogeneity of soil available N in the high‐diversity grassland, but not in the low‐diversity grassland. Synthesis and applications. We concluded that in a L. chinensis‐dominated eastern Eurasian steppe, cattle ranching could be considered as an optimal grazing management protocol to improve soil spatial heterogeneity because cattle grazing (CG) consistently increased soil spatial heterogeneity in the context of both low and high plant diversity. Nevertheless, soil spatial heterogeneity could be improved by any herbivore grazing regime [CG and/or sheep grazing (SG)] when high plant diversity is maintained. These findings highlight the importance of conserving plant diversity to maintain grassland structure and ecosystem function. In grassland systems with high plant diversity, herbivore grazing and plant diversity would jointly improve soil spatial heterogeneity, thus feeding back to maintain higher plant diversity. Therefore, high plant diversity could generate a positive feedback loop of herbivore–plant–soil interactions in grazed grassland systems. Our findings indicate the importance of herbivore assemblages in maintaining spatial heterogeneity in low‐ and high‐diversity grassland systems.
Abstract1. Herbivore grazing has major effects on soil nutrient dynamics in a variety of grassland ecosystems. Previous studies have examined how large herbivores as a group affect nutrient cycling, but little information is available on how assemblages of different herbivore species may influence nutrient cycling, and whether herbivore assemblage effects are influenced by plant community characteristics (e.g. composition, diversity) of the grazed grassland.2. We conducted a 5-year, replicated grazing experiment to test the effects of different large herbivore assemblages (cattle grazing, sheep grazing, combined cattle and sheep grazing, no grazing) under moderate grazing intensity on soil nitrogen (N) mineralization rate in two types of grassland communities (high forbs/high diversity and low forbs/low diversity) in meadow steppe habitat of northeast China.Moreover, we examined two distinctly different pathways that herbivores could influence soil N availability: directly through urine and dung deposition and indirectly by shifting grassland species composition (i.e. the grass: forb ratio), thereby the quality of plant litter available to soil decomposers.3. We found that grazer effects on soil N availability (indexed with anion and cation adsorption strips) depended on herbivore assemblage, and the herbivore assemblage effects varied in the two types of grasslands. In one type of grassland characterized by low diversity, grazing by each of the herbivore assemblages enhanced soil N availability compared to the ungrazed plots, and mixed species (cattle and sheep) grazing had a greater effect than single species grazing. In high diversity grassland, single species herbivore grazing significantly increased soil N availability, but mixed grazing had no effect.4. Mixed linear modelling revealed that soil N availability was facilitated primarily by excreta additions to the soil and secondarily by the abundance of grasses. 5.Synthesis. Grazers increased soil N availability directly by adding readily accessible N in urine and dung to the soil. Herbivores indirectly influenced soil N availability by altering the plant composition (grass: forb cover). Both mechanisms contributed to the variation in how different herbivore assemblages affected soil N availability in the two grassland types.Paper previously published as Standard Paper
Accounting for 10%–30% of global soil organic carbon, grassland soils potentially present a large reservoir for storing atmospheric CO2. Livestock grazing management can substantially affect grassland soil carbon (C) storage, but few controlled experiments have explored how herbivore assemblages (different herbivore species and combinations) affect soil C storage. We examined effects of moderate grazing by different herbivore assemblages (no grazing; sheep grazing; cattle grazing; mixed grazing by sheep and cattle) on soil organic carbon storage in two types of grassland communities (high forbs/high diversity and low forbs/low diversity), within a semi‐arid grassland with a 5‐year grazing history. We found that herbivore assemblage generated varying effects on soil C storage and the effects were subject to grassland community types. In the low diversity community, none of three herbivore assemblages studied had obvious effects on soil C storage. In the high diversity community, however, sheep grazing significantly decreased soil C storage due to high selectivity for high quality forbs, and cattle grazing had no effects on soil C storage, while mixed grazing by sheep and cattle significantly increased soil C storage. Overall, soil C storage was highest in mixed‐grazed grassland sites with high diversity. Synthesis and applications. Our study suggests that explicitly incorporating grazer species and the combination of grazing livestock into grassland grazing management may help mitigate greenhouse gas emissions. Caution should be exercised when using grazer species with high food selectivity in grazing management aimed at climate mitigation, especially in grasslands with abundant high quality forbs and high plant diversity, as sheep grazing may reduce soil carbon (C) storage. Moreover, mixed grazing, including multiple herbivore species, may contribute to a reduction in foraging selectivity for a plant community by means of complementary foraging. It could therefore be considered as an optimal grazing management strategy to maintain and improve soil C storage.
Iron (Fe) minerals play an important role in stabilizing soil organic carbon (SOC). Fe-mediated SOC protection is mainly achieved through adsorption, co-precipitation, or aggregation. However, newly emerging evidence indicates that the electron transfer role of Fe exerts a crucial influence upon SOC turnover. In this review, we address the pathways of Fe mineral-associated soil organic carbon (Fe-SOC) formation and decomposition, and summarize the Fe-mediated biogeochemical, including redox reactions, and physical processes that control SOC cycling. The reduction of Fe can release SOC from Fe-SOC coprecipitates and Fe(III) cemented micro-aggregates, with the process also releasing CO2 from the metabolic coupling of SOC oxidation and Fe reduction. The abiotic oxidation of Fe(II) by oxidants can also oxidize SOC to produce CO2 due to reactive oxygen species production. Therefore, the functional roles of Fe on SOC sequestration may be a double-edged sword, and these processes are rarely explored concurrently. We conclude that the roles of Fe minerals in SOC stability depend on the properties of the Fe mineral, edaphic properties, and anthropogenic influence. We highlight knowledge gaps and promising directions of future research in redox-dynamic environments to optimize carbon storage in soil. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.