We consider how to determine all transition rates of an ionic channel when it can be conformationally described by a star-graph branch Markov chain with continuous time. It is found that all transition rates are uniquely determined by the distributions of their lifetime and death-time at the end state of each branch. An algorithm to exactly calculate all transition rates is developed. Numerical examples are included to demonstrate the application of our approach to data.
According to the diffusion approximation and usual approximation scheme, we present two more biologically plausible so called second order spiking perceptron (SOSP) and extended second order spiking perceptron (ESOSP) based on the integrate-and-fire model with renewal process inputs, which employ both first and second statistical representation, i.e., the means, variances and correlations of the synaptic input. We show through various examples that such perceptrons, even a single neuron, are able to perform various complex non-linear tasks like the XOR problem, which is impossible to be solved by traditional single-layer perceptrons. Here our perceptrons offer a significant advantage over classical models, in that they include the second order statistics in computations, specially in that the ESOSP considers the learning of variance in the training. Our ultimate purpose is to open up the possibility of carrying out a stochastic computation in neuronal networks.
A framework of moment neuronal networks with intra- and inter-interactions is presented. It is to show how the spontaneous activity is propagated across the homogeneous and heterogeneous network. The input-output firing relationship and the stability are first explored for a homogeneous network. For heterogeneous network without the constraint of the correlation coefficients between neurons, a more sophisticated dynamics is then explored. With random interactions, the network gets easily synchronized. However, desynchronization is produced by a lateral interaction such as Mexico hat function. It is the external intralayer input unit that offers a more sophisticated and unexpected dynamics over the predecessors. Hence, the work further opens up the possibility of carrying out a stochastic computation in neuronal networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.