In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of programs and extracts them as vectors. Then it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. The experimental results show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art methods, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.