Automatic fire detection, which can detect and raise the alarm for fire early, is expected to help reduce the loss of life and property as much as possible. Due to its advantages over traditional methods, image processing technology has been applied gradually in fire detection. In this paper, a novel algorithm is proposed to achieve fire image detection, combined with Tchebichef (sometimes referred to as Chebyshev) moment invariants (TMIs) and particle swarm optimization-support vector machine (PSO-SVM). According to the correlation between geometric moments and Tchebichef moments, the translation, rotation, and scaling (TRS) invariants of Tchebichef moments are obtained first. Then, the TMIs of candidate images are calculated to construct feature vectors. To gain the best detection performance, a PSO-SVM model is proposed, where the kernel parameter and penalty factor of support vector machine (SVM) are optimized by particle swarm optimization (PSO). Then, the PSO-SVM model is utilized to identify the fire images. Compared with algorithms based on Hu moment invariants (HMIs) and Zernike moment invariants (ZMIs), the experimental results show that the proposed algorithm can improve the detection accuracy, achieving the highest detection rate of 98.18%. Moreover, it still exhibits the best performance even if the size of the training sample set is small and the images are transformed by TRS.
Creativity, critical thinking, problem-solving, communication, and collaboration are 21st-century skills that prepare individuals to succeed in the changing world. Therefore, there is a strong pedagogical need to promote these skills in EFL classrooms, given that meaningful language learning enables learners to use English as a tool for effective communication. However, the Chinese learning culture has long been criticised for being reluctant to develop thinking skills. Hence, this study aims to break the stereotypes and to find out how teachers promote thinking skills in Chinese primary EFL classrooms. The key finding reveals the use of silence as an opportunity to promote thinking, whereas challenges, such as insufficient pedagogical knowledge, are also identified from classroom interaction. Pedagogical suggestions are put forward for teacher educators and teachers in the field of language education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.