In sky-wave over-the-horizon radar (OTHR), it is quite difficult to handle the issues of target location (ground range) and height (altitude) estimation due to their joint effect on group range. This work addresses the joint estimation of target location and height by the means of multipath propagation of OTHR signals and structure of a two-dimensional (2D) array. Usually, the multipath signal results from ionosphere propagation in OTHR and can be produced in multi-input-multi-output (MIMO) radar by transmitting signals of various carrier frequencies. A 2D array provides the potential of elevation resolution, which is related to ground and slant ranges. By the multi-quasi-parabolic (MQP) ionospheric model, we formulate the multipath propagation and signal model for the OTHR with a target at location r and height h. Moreover, the joint maximum-likelihood estimates (MLEs) of r and h are derived, and the joint Fisher information matrix (FIM) is calculated. With the so-obtained FIM, the estimability is analyzed; that is: r and h are estimable if and only if either a multipath signal or 2D array is available. The joint Cramér-Rao bound (CRB) is computed and discussed for accuracy improvement. Additionally, the estimability is also extended to the joint estimation of target location, height, and velocity.
A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm 2 planar solid 63 Ni source with an activity of 2 mCi, the open-circuit voltage Voc of the fabricated single 2×2 mm 2 cell reaches as high as 1.62 V, the short-circuit current density Jsc is measured to be 16nA/cm 2 . The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices.
Ship detection in heavy sea clutter is a big challenge for over-the-horizon (OTH) radar. Wideband signal is helpful for improving range resolution and the signal-to-clutter ratio. In this paper, to support OTH radar employing wideband in cochannel interference, we propose environmental sensing-based waveform (ESBW) strategy, by considering transmit waveform design as an active approach and cognitive loop for the time-varying environment. In ESBW strategy, OTH radar monitors the environment in real time, estimates interference characteristics, designs transmit waveform adaptively, and employs traditional signal processing structure to detect targets in the presence of interference. ESBW optimization problem employs the criteria of maximizing the output signal-to-interference-plus-noise ratio (SINR) of matched filter and similarity constraint for reasonable range resolution and sidelobe levels. The analytic solution to this constrained problem is developed, so that ESBW design algorithm's efficiency is guaranteed, with adjustable SINR and autocorrelation function. A simulated scenario with strong interference and colored noise has been introduced. Simulation results demonstrate that OTH radar with ESBW strategy detects the target successfully in the background of cochannel interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.