In this paper, a Gaussian high-dimensional random matrix approach is used to conduct an in-depth study and analysis of the detection of abnormal student behaviour in Chinese language classrooms, and a corresponding model is designed for practical application. The Gaussian high-dimensional random matrix technique and recurrent neural network technique are applied to build a basic technical framework for intelligent proctoring. An innovative method of human posture estimation is used to complete the proctoring task, and the structure of the Gaussian high-dimensional random matrix method is simplified and the model is compressed to achieve real-time and parallelism of the method. A PolSAR sparse representation classification (OGRM_SRC) algorithm based on orthogonal Gaussian random matrices (OGRM) is proposed to construct an observation dictionary based on polarisation features and OGRM to select typical ground target samples in polarized feature images. The system not only functions as a psychometric assessment of students but also is capable of detecting and analysing abnormal student behaviour based on the improved forest algorithm. The residuals of the pixel to be classified are calculated relative to each atom in the observation dictionary, and the minimum reconstruction residual is used as the classification criterion. The OGRM_SRC algorithm is applied to classify the pixel, and the final classification results are obtained and evaluated for accuracy. We propose a fine-grained action recognition optimisation method for recurrent neural networks, fusing temporal attention information and spatial attention information to improve the action recognition method and improve the model’s ability to recognise fine-grained abnormal behaviours such as looking left, looking right, and copying with head down. Based on this, we conducted some comparative experiments to validate the effectiveness of our work and verified that the system achieved a recognition efficiency of 76.8 FPS and a recognition accuracy of 98.5% in a graphical computing processor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.