Hypoplastic constitutive equation based on nonlinear tensor functions possesses a failure surface but no yield surface. In this paper, we consider the numerical integration and FE implementation of a simple hypoplastic constitutive equation. The accuracy of several integration methods, including implicit and explicit methods, is examined by performing a set of triaxial compression tests. Adaptive explicit schemes show the best performance. In addition, the stress drift away from the failure surface is corrected with a predictor-corrector scheme, which is verified by two boundary value problems, i.e. rigid footing tests and slope stability.
Summary
This paper presents a constitutive model for time‐dependent behaviour of granular material. The model consists of 2 parts representing the inviscid and viscous behaviour of granular materials. The inviscid part is a rate‐independent hypoplastic constitutive model. The viscous part is represented by a rheological model, which contains a high‐order term denoting the strain acceleration. The proposed model is validated by simulating some element tests on granular soils. Our model is able to model not only the non‐isotach behaviour but also the 3 creep stages, namely, primary, secondary, and tertiary creep, in a unified way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.