Recent advances have indicated that osteocalcin, and in particular its undercarboxylated form (ucOC), is not only a nutritional biomarker reflective of vitamin K status and an indicator of bone health but also an active hormone that mediates glucose metabolism in experimental studies. This work has been supported by the putative identification of G protein-coupled receptor, class C, group 6, member A (GPRC6A) as a cell surface receptor for ucOC. Of note, ucOC has been associated with diabetes and with cardiovascular risk in epidemiological studies, consistent with a pathophysiological role for ucOC in vivo. Limitations of existing knowledge include uncertainty regarding the underlying mechanisms by which ucOC interacts with GPRC6A to modulate metabolic and cardiovascular outcomes, technical issues with commonly used assays for ucOC in serum, and a paucity of clinical trials to prove causation and illuminate the scope for novel health interventions. A key emerging area of research is the role of ucOC in relation to expression of GPRC6A in muscle, and whether exercise interventions may modulate metabolic outcomes favorably in part via ucOC. Further research is warranted to clarify potential direct and indirect roles for ucOC in human health and cardiometabolic diseases.
GPRC6A, the likely receptor of osteocalcin (OC), is expressed in mouse muscle. ucOC treatment augments insulin-stimulated skeletal muscle glucose uptake in C2C12 myotubes and following ex vivo muscle contraction. ucOC may partly account for the insulin sensitizing effect of exercise.
Emerging evidence suggests that undercarboxylated osteocalcin (ucOC) improves muscle glucose uptake in rodents. However, whether ucOC can directly increase glucose uptake in both glycolytic and oxidative muscles and the possible mechanisms of action still need further exploration. We tested the hypothesis that ucOC per se stimulates muscle glucose uptake via extracellular signal-regulated kinase (ERK), adenosine monophosphate-activated protein kinase (AMPK), and/or the mechanistic target of rapamycin complex 2 (mTORC2)-protein kinase B (AKT)-AKT substrate of 160 kDa (AS160) signaling cascade. Extensor digitorum longus (EDL) and soleus muscles from male C57BL/6 mice were isolated, divided into halves, and then incubated with ucOC with or without the pretreatment of ERK inhibitor U0126. ucOC increased muscle glucose uptake in both EDL and soleus. It also enhanced phosphorylation of ERK2 (Thr202/Tyr204) and AS160 (Thr642) in both muscle types and increased mTOR phosphorylation (Ser2481) in EDL only. ucOC had no significant effect on the phosphorylation of AMPKα (Thr172). The inhibition of ucOC-induced ERK phosphorylation had limited effect on ucOC-stimulated glucose uptake and AS160 phosphorylation in both muscle types, but appeared to inhibit the elevation in AKT phosphorylation only in EDL. Taken together, ucOC at the physiological range directly increased glucose uptake in both EDL and soleus muscles in mouse. The molecular mechanisms behind this ucOC effect on muscle glucose uptake seem to be muscle type-specific, involving enhanced phosphorylation of AS160 but limitedly modulated by ERK phosphorylation. Our study suggests that, since ucOC increases muscle glucose uptake without insulin, it could be considered as a potential agent to improve muscle glucose uptake in insulin resistant conditions.
Undercarboxylated osteocalcin (ucOC) may play a role in glucose homeostasis and cardiometabolic health. This review examines the epidemiological and interventional evidence associating osteocalcin (OC) and ucOC with metabolic risk and cardiovascular disease. The complexity in assessing such correlations, due to the observational nature of human studies, is discussed. Several studies have reported that higher levels of ucOC and OC are correlated with lower fat mass and HbA1c. In addition, improved measures of glycaemic control via pharmacological and non-pharmacological (e.g. exercise or diet) interventions are often associated with increased circulating levels of OC and/or ucOC. There is also a relationship between lower circulating OC and ucOC and increased measures of vascular calcification and cardiovascular disease. However, not all studies have reported such relationship, some with contradictory findings. Equivocal findings may arise because of the observational nature of the studies and the inability to directly assess the relationship between OC and ucOC on glycaemic control and cardiovascular health in humans. Studying OC and ucOC in humans is further complicated due to numerous confounding factors such as sex differences, menopausal status, vitamin K status, physical activity level, body mass index, insulin sensitivity (normal/insulin resistance/T2DM), tissue-specific effects and renal function among others. Current observational and indirect interventional evidence appears to support a relationship between ucOC with metabolic and cardiovascular disease. There is also emerging evidence to suggest a direct role of ucOC in human metabolism. Further mechanistic studies are required to (a) clarify causality, (b) explore mechanisms involved and
Uncarboxylated osteocalcin (ucOC) stimulates muscle glucose uptake in mice EDL and soleus muscles. However, whether ucOC also exerts a similar effect in insulin-stimulated muscles in a muscle type-specific manner is currently unclear. We aimed to test the hypothesis that, with insulin stimulation, ucOC per se has a greater effect on oxidative muscle compared with glycolytic muscle, and to explore the underlying mechanisms. Mouse (C57BL6, male 9-12 weeks) extensor digitorum longus (EDL) and soleus muscles were isolated and longitudinally split into halves. Muscle samples were treated with varying doses of recombinant ucOC (0, 0.3, 1, 3, 30 ng/ml), followed by insulin addition. Muscle glucose uptake, protein phosphorylation and total expression of protein kinase B (Akt), Akt substrate of 160 kDa (AS160), extracellular signal-regulated kinase isoform 2 (ERK2), and adenosine monophosphate-activated protein kinase subunit α (AMPKα) were assessed. ucOC treatment at 30 ng/ml enhanced muscle glucose uptake in insulin-stimulated soleus, a mainly oxidative muscle (17.5%, p < 0.05), but not in EDL-a mostly glycolytic muscle. In insulin-stimulated soleus only, ucOC treatment (3 and 30 ng/ml) increased phosphorylation of AS160 and ERK2, but not Akt or AMPKα. The ucOC-induced increase in ERK2 phosphorylation in soleus was not associated with the increase in glucose uptake or AS160 phosphorylation. ucOC enhances glucose uptake and AS160 phosphorylation in insulin-stimulated oxidative but not glycolytic muscle, via upstream mechanisms which appear to be independent of ERK or AMPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.