Viral nervous necrosis (VNN) is an acute and serious fish disease caused by nervous necrosis virus (NNV) which has been reported massive mortality in more than fifty teleost species worldwide. VNN causes damage of necrosis and vacuolation to central nervous system (CNS) cells in fish. It is difficult to identify the specific type of cell targeted by NNV, and to decipher the host immune response because of the functional diversity and highly complex anatomical and cellular composition of the CNS. In this study, we found that the red spotted grouper NNV (RGNNV) mainly attacked the midbrain of orange-spotted grouper (Epinephelus coioides). We conducted single-cell RNA-seq analysis of the midbrain of healthy and RGNNV-infected fish and identified 35 transcriptionally distinct cell subtypes, including 28 neuronal and 7 non-neuronal cell types. An evaluation of the subpopulations of immune cells revealed that macrophages were enriched in RGNNV-infected fish, and the transcriptional profiles of macrophages indicated an acute cytokine and inflammatory response. Unsupervised pseudotime analysis of immune cells showed that microglia transformed into M1-type activated macrophages to produce cytokines to reduce the damage to nerve tissue caused by the virus. We also found that RGNNV targeted neuronal cell types was GLU1 and GLU3, and we found that the key genes and pathways by which causes cell cytoplasmic vacuoles and autophagy significant enrichment, this may be the major route viruses cause cell death. These data provided a comprehensive transcriptional perspective of the grouper midbrain and the basis for further research on how viruses infect the teleost CNS.
The emergence of the CRISPR-Cas system as a technology has transformed our ability to modify nucleic acids, and the CRISPR-Cas13 system has been used to target RNA. CasRx is a small sized type VI-D effector (Cas13d) with RNA knockdown efficiency that may have an interference effect on RNA viruses. However, the RNA virus-targeting activity of CasRx still needs to be verified
in vivo
in vertebrates. In this study, we successfully engineered a highly effective CasRx system for fish virus interference. We designed synthetic mRNA coding for CasRx and used CRISPR RNAs to guide it to target the grouper nervous necrosis virus (RGNNV). This technique resulted in significant interference with virus infections both
in vitro
and
in vivo
. These results indicate that CRISPR/CasRx can be used to engineer interference against RNA viruses in fish, which provides a potential novel mechanism for RNA-guided immunity against other RNA viruses in vertebrates.
Importance
RNA viruses are most important viral pathogens infecting vertebrates and mammals. RNA virus populations are highly dynamic due to short generation times, large population sizes, and high mutation frequencies. Therefore, it is difficult to find a widely effective ways to inhibit RNA viruses. Therefore, we urgently need to develop effective antiviral methods. CasRx is a small sized type VI-D effector (Cas13d) with RNA knockdown efficiency that can have an interference effect on RNA viruses. Nervous necrosis virus (NNV), a non-enveloped positive-strand RNA virus, is one of the most serious viral pathogens infecting more than 40 cultured fish species resulting in huge economic losses worldwide. Here, we establish a novel efective CasRx system for RNA virus interference using NNV and grouper (Epinephelus coioices) as model. Our data show that CasRx have the most robust for RNA virus interference applications in fish and demonstrate its suitability for studying key questions relating to virus biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.