Social Recommender Systems (SRS) have attracted considerable attention since its accompanying service, social networks, helps increase user satisfaction and provides auxiliary information to improve recommendations. However, most existing SRS focus on social influence and ignore another essential social phenomenon, i.e., social homophily. Social homophily, which is the premise of social influence, indicates that people tend to build social relations with similar people and form influence propagation paths. In this article, we propose a generic framework Social PathExplorer (SPEX) to enhance neural SRS. SPEX treats the neural recommendation model as a black box and improves the quality of recommendations by modeling the social recommendation task, the formation of social homophily, and their mutual effect in the manner of multi-task learning. We design a Graph Neural Network based component for influence propagation path prediction to help SPEX capture the rich information conveyed by the formation of social homophily. We further propose an uncertainty based task balancing method to set appropriate task weights for the recommendation task and the path prediction task during the joint optimization. Extensive experiments have validated that SPEX can be easily plugged into various state-of-the-art neural recommendation models and help improve their performance. The source code of our work is available at: https://github.com/XMUDM/SPEX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.