Background Genome-wide association studies (GWASs) in Parkinson's disease (PD) have increased the scope of biological knowledge about the disease over the past decade. We sought to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into disease etiology. Methods We performed the largest meta-GWAS of PD to date, involving the analysis of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases (having a first degree relative with PD), and 1.4M controls. We carried out a meta-analysis of this GWAS data to nominate novel loci. We then evaluated heritable risk estimates and predictive models using this data. We also utilized large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type and biological pathway enrichments for the identified risk factors. Additionally we examined shared genetic risk between PD and other phenotypes of interest via genetic correlations followed by Mendelian randomization. Findings We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of PD depending on prevalence. Integrating methylation and expression data within a Mendelian randomization framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested PD loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes, smoking status, and educational attainment. Mendelian randomization between cognitive performance and PD risk showed a robust association. Interpretation These data provide the most comprehensive understanding of the genetic architecture of PD to date by revealing many additional PD risk loci, providing a biological context for these risk factors, and demonstrating that a considerable genetic component of this disease remains unidentified. Funding See supplemental materials (Text S2). lead to earlier detection and refined diagnostics, which may help improve clinical trials (4). The generation of copious amounts of public summary statistics created by this effort relating to both the GWAS and subsequent analyses of gene expression and methylation patterns may be of use to investigators planning follow-up functional studies in stem cells or other cellular screens, allowing them to prioritize targets more efficiently using our data as additional evidence. We hope our findings may have some downstream clinical impact in the future such as improved patient stratification for clinical trials and genetically informed drug targets.
The maintenance of a progenitor cell population as a reservoir of undifferentiated cells is required for organ development and regeneration. However, the mechanisms by which epithelial progenitor cells are maintained during organogenesis are poorly understood. We report that removal of the parasympathetic ganglion in mouse explant organ culture decreased the number and morphogenesis of keratin 5-positive epithelial progenitor cells. These effects were rescued with an acetylcholine analog. We demonstrate that acetylcholine signaling, via the muscarinic M1 receptor and EGFR, increased epithelial morphogenesis and proliferation of the keratin 5-positive progenitor cells. Parasympathetic innervation maintained the epithelial progenitor cell population in an undifferentiated state, which was required for organogenesis. This mechanism for epithelial progenitor cell maintenance may be targeted for organ repair or regeneration.
Parkinson’s disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically PD is associated with resting tremor, postural instability, rigidity, bradykinesia and a good response to levodopa therapy. Over the last fifteen years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets.
Parkinson’s disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson’s disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson’s disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson’s disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson’s disease cases, 13 431 Parkinson’s disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson’s disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson’s disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson’s disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson’s disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.
Background Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome‐wide association studies. The most recent large‐scale PD genome‐wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome‐wide association study locus. The objective of the current study was to create a tool that would display data for relevant PD risk loci and provide guidance with the prioritization of causal genes and potential mechanisms at each locus. Methods We included all significant genome‐wide signals from multiple recent PD genome‐wide association studies including themost recent PD risk genome‐wide association study, age‐at‐onset genome‐wide association study, progression genome‐wide association study, and Asian population PD risk genome‐wide association study. We gathered data for all genes 1 Mb up and downstream of each variant to allow users to assess which gene(s) are most associated with the variant of interest based on a set of self‐ranked criteria. Multiple databases were queried for each gene to collect additional causal data. Results We created a PD genome‐wide association study browser tool ( https://pdgenetics.shinyapps.io/GWASBrowser/ ) to assist the PD research community with the prioritization of genes for follow‐up functional studies to identify potential therapeutic targets. Conclusions Our PD genome‐wide association study browser tool provides users with a useful method of identifying potential causal genes at all known PD risk loci from large‐scale PD genome‐wide association studies. We plan to update this tool with new relevant data as sample sizes increase and new PD risk loci are discovered. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.