Clostridium perfringens incriminated in many diseases among different species of animals due to its ability to produce many virulence factors. In the current study, 135 intestinal samples were collected from different animal species of different localities in Egypt. Samples were subjected to isolation and identification (morphologically and biochemically) for obtaining Clostridium perfringens isolates (n=26, 19.25%). The PCR was carried out to elucidate the virulence factors. It was indicated that all the 26 Clostridium perfringens isolates had CPA gene and Clostridium perfringens enterotoxin (CPE gene), whereas 23% of isolates of chicken and cattle intestinal samples contained CPA, Net B, and CPE genes as virulence factors. Consequently, those isolates are highly recommended to be used in the preparation of enterotoxemia and necrotic enteritis vaccines as they are more virulent strains.
In the present work a lateral flow immunochromatographic test (LFT) for rapid detection of Clostridium perfringens toxins types, alpha (α), beta (β) and epsilon (ε) in clinical samples was developed. C. perfringens toxins were prepared, purified and inactivated with 0.2% formalin. Polyclonal antibodies specific to C. perfringens toxins types α, β and ε toxoids were prepared in rabbits and guinea pigs. The toxoid specific polyclonal antibodies prepared in rabbits were labelled with gold chloride nanoparticles. The prepared toxin specific rabbit and guinea pigs antibodies and goat anti-rabbit antibodies were utilised in development of a lateral flow immunochromatographic test and the latter - evaluated for detection of C. perfringens α, β and ε toxins in clinical samples. The sensitivity and specificity and accuracy of the developed LFT were determined by comparison with a commercially available ELISA used for detection of these toxins. The prepared LFT was capable to detect C. perfringens α, β and ε toxins in quantities of 2 μg/ml, 250 ng/ml and 60 ng/ml, respectively. One hundred poultry suspected faecal samples was examined both with the prepared LFT and commercial ELISA to test the validity of developed LFT. The sensitivity, specificity and accuracy of the LFT for detection of C. perfringens toxins were 81%, 95.2% and 90%, respectively, for α toxin, 76.6%, 98.5% and 72%, respectively, for β toxin and 66.6%, 98.8% and 95%, respectively, for ε toxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.