The analysis of the large deformation of a non-linear cantilever functionally graded material (FGM) beam is made. When subjected to an end moment, explicit expressions for deflection and rotation are derived for a functionally graded beam with work hardening of power law. The effects of the gradient distribution of Young’s modulus and the material non-linearity parameter on the deflections of the FGM beam are analyzed. Our results show that depth-dependent Young’s modulus and material non-linearity have a significant influence on the deflections of the beam, and a FGM beam can bear larger applied load than a homogeneous beam. Moreover, to determine an optimal gradient distribution, an optimum design of a beam of a lighter weight and larger stiffness is given. The influence of the geometric non-linearity of the beam is also studied. Large and small deformation theories predict nearly the same deflections with 5% error when rotation is less than 45°, and the predictions based on the small deformation theory are overestimated to exceed 10% when rotation is greater than 60°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.