Designing a molecular-level Ln3+ separation system remains a challenge for developing next-generation separation methodologies. Herein, we report crystallization-based Nd3+/Dy3+ separation using a tripodal Schiff base ligand. Highly selective crystallization of...
The mechanism of pattern formation in reaction-diffusion systems is treated as an interesting subject, generally for understanding self-organization observed in living systems and natural phenomena. Several spatial patterns appear in the reaction-diffusion systems where an activator and an inhibitor coexist as an intermediate, as represented by a traveling wave, a stationary wave called a Turing structure, etc. Here, we show new kinds of waves in reaction-diffusion systems, which exhibit reciprocating motion without colliding into each other or blinking periodically. These patterns have never been observed in the conventional numerical models, although experimentally oscillating spots have been often observed. Our model demonstrates that other than the ratio of diffusion coefficients for both intermediates, the thickness of reaction media acts to generate inhibitory effect. The spatial factor of the medium contributes to new pattern formation in reaction-diffusion systems. For the design of new functional materials, the concept might be useful as a simple controlling method for pattern dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.