We have developed a 16-inch ultraviolet-ray image intensifier (UVII) tube to form the spherical focal surface of the All-sky Survey High Resolution Air-shower Detector (Ashra) telescope, a new air fluorescence and Cerenkov detector to observe TeV gamma rays, very high energy neutrinos, and extremely high energy cosmic rays. The UVII has a very large effective photocathode area of 16-inch diameter and reduces an image size to 1-inch diameter using the electric lens effect. This enables us to use a solid-state imager to take focal surface images in the Ashra telescope. Thus, UVII is a key technology for the Ashra experiment to realize a much lower pixel cost in comparison with other experiments using photomultiplier arrays at the focal surface. The UVII achieves a high resolution of 3.4 Lp/mm at the input window. The output screen of the UVII is made of a fiber optic plate (FOP) with a concave shape to optimize the electric lens configuration under the fixed curvature of input window. This results in an almost uniform resolution over the whole sensitive area. We have adopted a P47 phosphor screen with a 10% decay time of 100 ns and have obtained an amplification factor of about 100. In this paper we present the design, construction, and performance of the 16-inch UVII.Index Terms-Author, please supply your own keywords or send a blank e-mail to keywords@ieee.org to receive a list of suggested keywords.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.