Recent molecular studies in the genera Aegilops and Triticum showed that allopolyploidization (interspecific or intergeneric hybridization followed by chromosome doubling) generated rapid elimination of low-copy or high-copy, non-coding and coding DNA sequences. The aims of this work were to determine the amount of nuclear DNA in allopolyploid species of the group and to see to what extent elimination of DNA sequences affected genome size. Nuclear DNA amount was determined by the flow cytometry method in 27 natural allopolyploid species (most of which were represented by several lines and each line by several plants) as well as 14 newly synthesized allopolyploids (each represented by several plants) and their parental plants. Very small intraspecific variation in DNA amount was found between lines of allopolyploid species collected from different habitats or between wild and domesticated forms of allopolyploid wheat. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various allopolyploid species, at both the tetraploid and hexaploid levels. In most allopolyploids nuclear DNA amount was significantly less than the sum of DNA amounts of the parental species. Newly synthesized allopolyploids exhibited a similar decrease in nuclear DNA amount in the first generation, indicating that genome downsizing occurs during and (or) immediately after the formation of the allopolyploids and that there are no further changes in genome size during the life of the allopolyploids. Phylogenetic considerations of the origin of the B genome of allopolyploid wheat, based on nuclear DNA amount, are discussed.
Sharon goatgrass (Aegilops sharonensis) is a wild relative of wheat that is native to Israel and Lebanon. The importance of A. sharonensis as a source of new resistance genes for wheat warrants additional research on the characterization of accessions for economically important genes. Thus, the objectives of this study were to evaluate a collection of A. sharonensis accessions for resistance to seven important fungal diseases of wheat and assess the phenotypic diversity of the germplasm for disease reaction. The frequency of resistance in A. sharonensis was highest to powdery mildew (79 to 83%) and leaf rust (60 to 77%). Resistance to stem rust also was common, although the percentage of resistant accessions varied markedly depending on the pathogen race—from 13% to race TTTT to 72% to race QCCJ. The frequency of resistance was intermediate to stripe rust (45%) and low to tan spot (15 to 29%) and spot blotch (0 to 34%). None of the A. sharonensis accessions was resistant to Fusarium head blight. Many of the accessions tested exhibited heterogeneous reactions (i.e., had both resistant and susceptible plants) to one or more of the diseases, suggesting that heterozygosity may be present at some resistance loci. Substantial variation was observed in the level of diversity to individual diseases because Shannon's Equitability index ranged from 0.116 (for Fusarium head blight) to 0.994 (for tan spot). A high level of diversity was found both between and within collection sites. Moreover, differences in the geographic distribution of resistant accessions were observed. For example, accessions from northern Israel generally were less diverse and less resistant to leaf rust and stripe rust than accessions from more southern locations. Four A. sharonensis accessions were highly resistant to most of the diseases evaluated and may provide a source of unique resistance genes for introgression into cultivated wheat.
One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.