A stochastic finite element-based methodology is developed for creep damage assessment in pipings carrying high-temperature fluids. The material properties are assumed to be spatially randomly inhomogeneous and are modelled as 3-D non-Gaussian fields. A spectral-based approach for random field discretization that preserves exactly the non-Gaussian characteristics is used in developing the stochastic finite element model. The meshing used in random field discretization is distinct from FE meshing, depends on the correlation characteristics of the random fields and is computationally efficient. The methodology enables estimating the failure probability and the most likely regions of failure in a section of a circular pipe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.