Abstract:Fluctuations of groundwater levels were used to predict soluble phosphorus concentrations. In-situ observations showed a decrease in soluble phosphorus during groundwater recession and an increase with groundwater rise. A spatial analysis of the simulated soluble phosphorus and groundwater levels indicated similarity of patterns (spatial correlation) 99% of the time. A geographically weighted multivariate analysis of soluble phosphorus using groundwater levels, phosphorus levels of the Kissimmee River, and distance from the Kissimmee River as predictors showed a goodness of fit (R 2 ) ranging from 0.2 to 0.7. Results indicated no significant difference between the simulated and observed soluble phosphorus levels at a p value of 0.01. Among the parameters, the groundwater level explained 70% of the soluble phosphorus variability. The distance to surface waterbodies and their phosphorus levels had significant weights only within a 5-km range from the waterbody. A model generalization is further required to simulate the spatiotemporal groundwater-phosphorus dynamics over meaningful temporal ranges -at least for 3 to 5 years -for conclusiveness of the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.