Abstract-This paper describes edge detection as a composition of four steps: conditioning, feature extraction, blending, and scaling. We examine the role of geometry in determining good features for edge detection and in setting parameters for functions to blend the features. We find that: 1) statistical features such as the range and standard deviation of window intensities can be as effective as more traditional features such as estimates of digital gradients; 2) blending functions that are roughly concave near the origin of feature space can provide visually better edge images than traditional choices such as the city-block and Euclidean norms; 3) geometric considerations can be used to specify the parameters of generalized logistic functions and Takagi-Sugeno input-output systems that yield a rich variety of edge images; and 4) understanding the geometry of the feature extraction and blending functions is the key to using models based on computational learning algorithms such as neural networks and fuzzy systems for edge detection. Edge images derived from a digitized mammogram are given to illustrate various facets of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.