Abstract. In recent years, droughts have frequently hit China's terrestrial ecosystems. How these droughts affected carbon sequestration by China's terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China for the period from 2000 to 2011. Different categories of droughts, as indicated by a standard precipitation index (SPI), extensively hit terrestrial ecosystems in China, particularly in 2001, 2006, 2009 and 2011. The national total NEP exhibited a slight decline of −11.3 Tg C yr−2 during the study period, mainly due to large reductions of NEP in typical drought-hit years 2001, 2006, 2009 and 2011, ranging from 61.1 Tg C yr−1 to 168.8 Tg C yr−1. National and regional total NEP anomalies were correlated with corresponding annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. In drought years, the reductions of NEP might be caused by a larger decrease in gross primary productivity (GPP) than in respiration (RE) (2001 and 2011), a decrease in GPP and an increase in RE (2009), or a larger increase in RE than in GPP (2006). Droughts had lagged effects of up to 3–6 months on NEP due to different reactions of GPP and RE to droughts. In east humid and warm parts of China, droughts have predominant and short-term lagged influences on NEP. In western cold and arid regions, the effects of droughts on NEP were relatively weaker and might last for a longer period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.