Abstract. The paper covers the results of VVER core reflooding studies in fuel assembly (FA) mockup of 126 fuel rod simulators with axial power peaking. The experiments were performed for two types of flooding. The first type is top flooding of the empty (steamed) FA mockup. The second type is bottom flooding of the FA mockup with level of boiling water. The test parameters are as follows: the range of the supplied power to the bundle is from 40 to 320 kW, the cooling water flow rate is from 0.04 to 1.1 kg/s, the maximum temperature of the fuel rod simulator is 800°C and the linear heat flux is from 0.1 to 1.0 kW/m. The test results were used for computer code validation.
Coolant mixing is an important mitigative mechanism against reactivity accidents caused by local boron dilution. Experiments on coolant mixing were carried out at three different test facilities representing three different reactor types. These are the ROCOM test facility modelling a German KONVOI-type reactor, the Vattenfall test facility being a model of a Westinghouse three-loop PWR, and the Gidropress test facility modelling a VVER-1000 PWR. The scenario of the start-up of the first main coolant pump was investigated in all three facilities. The experiments were accompanied by velocity measurements in the downcomer for the same scenario in the ROCOM and the Vattenfall test facilities. A similar flow structure was found in these measurements in both cases. A maximum of the velocity is measured at the opposite side in regard to the position of the loop with the starting-up pump whilst a recirculation area was found just below this inlet nozzle in both facilities. The analysis of the slug mixing experiments showed also comparable flow behaviour. In accordance with the velocity measurements, the first part of the deboration is also found on the opposite side. In this region, the maximum deboration is measured in all three cases. These maximum values are in the same order of magnitude for nearly identical initial slug volumes.
A series of experimental studies of the boiling liquid flow from holes of 8-60 mm diameter were conducted. The initial water pressure in the tank was 7-11.5 MPa, water temperature was 160-235ºC. Various stages of jet formation were determined as well as the jet out flowing velocity, and velocity of the flow. An quasi-stationary model of boiling liquid flow was suggested. The estimated data on the density distribution of the vapor-liquid mixture in the jet were given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.