BackgroundMass treatment with ivermectin is a proven strategy for controlling onchocerciasis as a public health problem, but it is not known if it can also interrupt transmission and eliminate the parasite in endemic foci in Africa where vectors are highly efficient. A longitudinal study was undertaken in three hyperendemic foci in Mali and Senegal with 15 to 17 years of annual or six-monthly ivermectin treatment in order to assess residual levels of infection and transmission and test whether ivermectin treatment could be safely stopped in the study areas.Methodology/Principal FindingsSkin snip surveys were undertaken in 126 villages, and 17,801 people were examined. The prevalence of microfilaridermia was <1% in all three foci. A total of 157,500 blackflies were collected and analyzed for the presence of Onchocerca volvulus larvae using a specific DNA probe, and vector infectivity rates were all below 0.5 infective flies per 1,000 flies. Except for a subsection of one focus, all infection and transmission indicators were below postulated thresholds for elimination. Treatment was therefore stopped in test areas of 5 to 8 villages in each focus. Evaluations 16 to 22 months after the last treatment in the test areas involved examination of 2,283 people using the skin snip method and a DEC patch test, and analysis of 123,000 black flies. No infected persons and no infected blackflies were detected in the test areas, and vector infectivity rates in other catching points were <0.2 infective flies per 1,000.Conclusion/SignificanceThis study has provided the first empirical evidence that elimination of onchocerciasis with ivermectin treatment is feasible in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other endemic areas in Africa, the principle of elimination has been established. The African Programme for Onchocerciasis Control has adopted an additional objective to assess progress towards elimination endpoints in all onchocerciasis control projects and to guide countries on cessation of treatment where feasible.
BackgroundMass treatment with ivermectin controls onchocerciasis as a public health problem, but it was not known if it could also interrupt transmission and eliminate the parasite in endemic foci in Africa where vectors are highly efficient. A longitudinal study was undertaken in three hyperendemic foci in Mali and Senegal with 15 to 17 years of annual or six-monthly ivermectin treatment in order to assess residual levels of infection and transmission, and test whether treatment could be safely stopped. This article reports the results of the final evaluations up to 5 years after the last treatment.Methodology/Principal FindingsSkin snip surveys were undertaken in 131 villages where 29,753 people were examined and 492,600 blackflies were analyzed for the presence of Onchocerca volvulus larva using a specific DNA probe. There was a declining trend in infection and transmission levels after the last treatment. In two sites the prevalence of microfilaria and vector infectivity rate were zero 3 to 4 years after the last treatment. In the third site, where infection levels were comparatively high before stopping treatment, there was also a consistent decline in infection and transmission to very low levels 3 to 5 years after stopping treatment. All infection and transmission indicators were below postulated thresholds for elimination.Conclusion/SignificanceThe study has established the proof of principle that onchocerciasis elimination with ivermectin treatment is feasible in at least some endemic foci in Africa. The study results have been instrumental for the current evolution from onchocerciasis control to elimination in Africa.
Background: The Onchocerciasis Control Program (OCP) in West Africa has been closed down at the end of 2002. All subsequent control will be transferred to the participating countries and will almost entirely be based on periodic mass treatment with ivermectin. This makes the question whether elimination of infection or eradication of onchocerciasis can be achieved using this strategy of critical importance. This study was undertaken to explore this issue.
Since vector control began in 1975, waves of Simulium sirbanum and S. damnosum s.str., the principal vectors of severe blinding onchocerciasis in the West African savannas, have reinvaded treated rivers inside the original boundaries of the Onchocerciasis Control Programme in West Africa. Larviciding of potential source breeding sites has shown that these 'savanna' species are capable of travelling and carrying Onchocerca infection for at least 500 km northeastwards with the monsoon winds in the early rainy season. Vector control has, therefore, been extended progressively westwards. In 1984 the Programme embarked on a major western extension into Guinea, Sierra Leone, western Mali, Senegal and Guinea-Bissau. The transmission resulting from the reinvasion of northern Côte d'Ivoire and Burkina Faso has been reduced by over 95%, but eastern Mali has proved more difficult to protect because of sources in both Guinea and Sierra Leone. Rivers in Sierra Leone were treated for the first time in 1989 and biting and transmission rates in Sierra Leone and Guinea fell by over 90%. Because of treatment problems in some complex rapids and mountainous areas, flies still reinvaded Mali, though biting rates were approximately 70% lower than those recorded before anti-reinvasion treatments started. It was concluded that transmission in eastern Mali has now been reduced to the levels required to control onchocerciasis.
The relation between the number of microfilariae (mf) ingested by host-seeking vectors of human onchocerciasis and skin mf load is an important component of the population biology of Onchocerca volvulus, with implications for disease control and evaluation of the risk of transmission recrudescence. The microsimulation model ONCHOSIM has been used to assess such risk in the area of the Onchocerciasis Control Program (OCP) in West Africa, based on a strongly nonlinear relation between vector mf uptake and human mf skin density previously published. However, observed levels of recrudescence have exceeded predictions, warranting a recalibration of the model. To this end, we present the results of a series of fly-feeding experiments carried out in savanna and forest localities of West Africa. Flies belonging to Simulium damnosum s.s., S. sirbanum, S. soubrense, and S. leonense were fed on mf carriers and dissected to assess the number of ingested mf escaping imprisonment by the peritrophic matrix (the number of exo-peritrophic mf), a predictor of infective larval output. The method of instrumental variables was used to obtain (nearly) unbiased estimates of the parameters of interest, taking into account error in the measurement of skin mf density. This error is often neglected in these types of studies, making it difficult to ascertain the degree of density-dependence truly present in the relation between mf uptake and skin load. We conclude that this relation is weakly (yet significantly) nonlinear in savanna settings but indistinguishable from linearity in forest vectors. Exo-peritrophic mf uptake does not account for most of the density dependence in the transmission dynamics of the parasite as previously thought. The number of exo-mf in forest simuliids is at least five times higher than in the savanna vectors. Parasite abundance in human onchocerciasis is regulated by poorly known mechanisms operating mainly on other stages of the lifecycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.