The effect of Cu-Sn intermetallic compounds (IMC) on the fatigue failure of solder joint during thermal cycling has been studied. The samples consist of components [leadless ceramic chip carrier (LCCC)] soldered onto FR-4 printed circuit board (PCB), and are prepared by conventional reflow soldering using a 63Sn-37Pb solder paste. The specimens are subjected to thermal cycling between 035 C and 125 C with a frequency of two cycles per hour until failure. The results indicate that the fatigue lifetime of the solder joints depends on the thickness of IMC's layer between Cu-pad and bulk solder, and the relation of the lifetime to the thickness can be described as a monotonically decreasing curve. The lifetime is very sensitive to the thickness of the IMC when the thickness is less than 1.4 m. During thermal cycling, the thickness of the IMC layer increases and then the interface between IMC and solder becomes gradually flatter. The results of X-ray diffraction and scanning electron microscope (SEM) analysis show that cracks propagate along the interface between the IMC layer and the solder joint. The Cu3Sn ("-phase) is also found to form between the Cu-pad and-phase during thermal cycling. On the basis of the above results, the thick and flattened IMC layer is shown to responsible for the fatigue failure of solder joint during thermal cycling. The results of this paper can be used to optimize the reflow soldering process for the fabrication of robust solder joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.